首页> 外文学位 >Computational uses of receptive field scatter: Sparse image representation, fast nonlinear diffusion, and image segmentation.
【24h】

Computational uses of receptive field scatter: Sparse image representation, fast nonlinear diffusion, and image segmentation.

机译:感受野散射的计算用途:稀疏的图像表示,快速的非线性扩散和图像分割。

获取原文
获取原文并翻译 | 示例

摘要

In primate cortex roughly one million afferent axons synapse on area V1, which contains nearly a billion neurons. This over-representation of the retinal signal by almost three orders of magnitude is expressed by a "scattered" topographic map of the visual field---at each locus of V1, there are multiple retinal inputs whose retinal locations are scattered around that specified by the map, with the scale of scatter roughly on the order of the receptive field size. Nevertheless, this apparently over-represented and blurred system supports perceptual signals with sharply delineated boundaries.; In this thesis the issue of neural over-representation and scattered spatial representation is considered in the context of the computational problem of smoothing and interpolation of noisy and possibly incomplete data, without simultaneously blurring valid object boundaries. Early approaches to this problem in computer vision used purely local operators---an isotropic second difference operator (the Laplacian) preceded by a low-pass Gaussian filter. This method, associated with the term scale space, was eventually recognized as being equivalent to isotropic diffusion. In the past fifteen years nonlinear diffusion, in both computational and neural contexts, has been shown to provide superior results. Recently, it has been shown that by displacing the lobes of conventional spatial filters from their topographic locus, it is possible to achieve results that are equivalent to nonlinear diffusion, an algorithm termed offset filtering.; Here, it is shown that offset filtering can be achieved by a scattered and over-represented neural system, motivated by the anatomical structure of V1. The over-representation, coupled with simple models of lateral inhibition, allows rapid computation of the offset filtered input data, in effect trading neural space for rapid response and physiological simplicity. It is shown that this analysis can account for a variety of psychopliysical and physiological results related to the "nonclassical" receptive field structure of neurons in V1. The optimum cortical scatter is shown to be about one-half the local receptive field size, a result which is consistent with recent physiological measurements.; Finally, the data structure provided by the sparse; thresholded offset filter data points is used with a graph-theoretic partitioning algorithm to achieve high quality visual segmentations. These results provide a biologically consistent and computationally effective means of utilizing an over-represented but sparsely sampled cortical representation of the visual field.
机译:在灵长类动物皮层中,V1区域大约有100万个传入轴突突触,其中包含近十亿个神经元。视网膜信号的这种过度表示几乎是三个数量级,是通过视野的“散布”地形图来表示的-在V1的每个位置,都有多个视网膜输入,其视网膜位置分散在由在地图上,散射的大小大致按接收场大小的顺序排列。然而,这个明显地被过度代表和模糊的系统支持具有清晰划定边界的感知信号。在本文中,在噪声和可能不完整数据的平滑和插值而不同时模糊有效对象边界的计算问题的背景下,考虑了神经过表达和分散空间表示的问题。在计算机视觉中解决此问题的早期方法是使用纯局部算子-一种各向同性的二阶差分算子(拉普拉斯算子),其后是低通高斯滤波器。这种与术语尺度空间相关的方法最终被认为等同于各向同性扩散。在过去的十五年中,在计算和神经环境中,非线性扩散已被证明可以提供优异的结果。最近,已经表明,通过将常规空间滤波器的波瓣从其拓扑轨迹上移开,有可能获得与非线性扩散等效的结果,该算法称为偏移滤波。此处显示,可以通过以V1的解剖结构为动力,通过分散和过度表示的神经系统来实现偏移滤波。过度表达与简单的横向抑制模型相结合,可以快速计算偏移滤波后的输入数据,从而有效地交换了神经空间,从而实现了快速响应和生理简化。结果表明,该分析可以解释与V1中神经元的“非经典”感受野结构有关的各种心理和生理结果。最佳的皮层散射被证明是局部感受野大小的一半,这一结果与最近的生理学测量结果是一致的。最后,由稀疏提供的数据结构;阈值偏移滤波器数据点与图论分区算法一起使用,以实现高质量的视觉分割。这些结果提供了利用视野的过分代表但稀疏采样的皮质表示的生物学上一致且计算有效的手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号