首页> 外文学位 >Active/passive Feedback Controls and Energy Harvesting from Vortex-Induced Vibrations.
【24h】

Active/passive Feedback Controls and Energy Harvesting from Vortex-Induced Vibrations.

机译:主动/被动反馈控制和来自涡流振动的能量收集。

获取原文
获取原文并翻译 | 示例

摘要

Fluid-structure interactions occur in many enginnering and industrial applications. Such interactions may result in undesirable forces acting on the structure that may cause fatigue and degradation of the structural components. The purpose of this research is to develop a solver that simulates the fluid-structure interaction, assess tools that can be used to control the resulting motions and analyze a system that can be used to convert the structure's motion to a useful form of energy. For this purpose, we develop a code which encompasses three-dimensional numerical simulations of a flow interacting with a freely-oscillating cylinder. The solver is based on the accelerated reference frame technique (ARF), in which the momentum equations are directly coupled with the cylinder motion by adding a reference frame acceleration term; the outer boundary conditions of the flow domain are updated using the response of the cylinder.;We develop active linear and nonlinear velocity feedback controllers that suppress VIV by directly controlling the cylinder's motion. We assess their effectiveness and compare their performance and required power levels to suppress the motion of the cylinder. Particularly, we determine the most effective control law that requires minimum power to achieve a desired controlled amplitude. Furthermore, we investigate, in detail, the feasibility of using a nonlinear energy sink to control the vortex-induced vibrations of a freely oscillating circular cylinder. It has been postulated that such a system, which consists of a nonlinear spring, can be used to control the motion over a wide range of frequencies. However, introducing an essential nonlinearity of the cubic order to a coupled system could lead to multiple stable solutions depending on the initial conditions, system's characteristics and parameters. Our investigation aims at determining the effects of the sink parameters on the response of the coupled system.;We also investigate the extent of drag reduction that can be attained through rotational oscillations of the circular cylinder. An optimization is performed by combining the CFD solver with a global deterministic optimization algorithm. The use of this optimization tool allows for a rapid determination of the rotational amplitude and frequency domains that yield minimum drag. We also perform three-dimensional numerical simulations of an inline-vibrating cylinder over a range of amplitudes and frequencies with the objective of suppressing the lift force. We compare the amplitude-frequency response curves, levels of lift suppression, and synchronization maps for two- and three-dimensional flows.;Finally, we evaluate the possibility of converting vortex-induced vibrations into a usable form of electric power. Different transduction mechanisms can be employed for converting these vibrations to electric power, including electrostatic, electromagnetic, and piezoelectric transduction. We consider the piezoelectric option because it can be used to harvest energy over a wide range of frequencies and can be easily implemented. We particularly investigate the conversion of vortex-induced vibrations to electric power under different operating conditions including the Reynolds number and load resistance.
机译:流体结构相互作用发生在许多工程和工业应用中。这种相互作用可能导致不希望有的作用在结构上的力,从而可能导致结构部件的疲劳和退化。本研究的目的是开发一种求解器,该求解器可模拟流体-结构的相互作用,评估可用于控制结果运动的工具以及分析可用于将结构的运动转换为有用能量形式的系统。为此,我们开发了一个代码,其中包含与自由摆动的气缸相互作用的流体的三维数值模拟。求解器基于加速参考框架技术(ARF),其中通过添加参考框架加速度项,将动量方程式直接与圆柱运动耦合。我们利用汽缸的响应来更新流域的外边界条件。;我们开发了主动线性和非线性速度反馈控制器,该控制器通过直接控制汽缸的运动来抑制VIV。我们评估它们的有效性,并比较它们的性能和所需的功率水平,以抑制气缸的运动。特别是,我们确定了最有效的控制律,该律需要最小的功率才能达到所需的受控幅度。此外,我们详细研究了使用非线性能量阱来控制自由振荡的圆柱体的涡激振动的可行性。据推测,这种由非线性弹簧组成的系统可用于在很宽的频率范围内控制运动。但是,将三次方的基本非线性引入耦合系统可能会导致多个稳定解,具体取决于初始条件,系统的特性和参数。我们的研究旨在确定凹陷参数对耦合系统响应的影响。我们还研究了通过圆柱体的旋转振荡可以实现的减阻程度。通过将CFD求解器与全局确定性优化算法相结合来执行优化。使用此优化工具可以快速确定产生最小阻力的旋转幅度和频域。为了抑制提升力,我们还在振幅和频率范围内对直列式振动缸进行了三维数值模拟。我们比较了幅值-频率响应曲线,升力抑制的水平以及二维和三维流的同步图。最后,我们评估了将涡激振动转换为可用形式的电力的可能性。可以采用不同的换能机构将这些振动转换为电能,包括静电,电磁和压电换能。我们考虑使用压电选件,因为它可用于在很宽的频率范围内收集能量,并且易于实现。我们特别研究了在包括雷诺数和负载电阻在内的不同工作条件下,涡流引起的振动向电力的转换。

著录项

  • 作者

    Mehmood, Arshad.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号