首页> 外文学位 >Electrostatic actuation based modulation of polar molecules and associated force interaction studies.
【24h】

Electrostatic actuation based modulation of polar molecules and associated force interaction studies.

机译:基于静电驱动的极性分子调制和相关的力相互作用研究。

获取原文
获取原文并翻译 | 示例

摘要

Seamless integration of artificial components with biological systems to form an elegant biotic-abiotic interface or smart surface has promising application potential in biomedical engineering. The specific aim of this study is to implement the actuation and modulation of binding behavior between biomolecules under electrostatic stimuli, and investigate the corresponding force interaction between the complementary pairs. The nanofabrication technology was utilized to establish the patterned binding pair of thrombin and DNA aptamer on gold substrate, and different electrical fields were applied on the system to evaluate electrostatic influence. The atomic force microscopy (AFM) surface imaging was then used to explicate the surface height change after the removal of the electrical fields. The height change of the surface showed that positive electrical fields can successfully break the bonds between thrombin and aptamer, while moderate negative electrical fields kept the integral structure. The experimental studies implement the idea of electrostatic actuation and modulation of the complementary pair. The force interaction between the pair was then investigated through AFM based dynamic force spectroscopy (DFS). The open circuit DFS experiment was conducted first to clarify the magnitude of single molecule level force interaction between thrombin and aptamer, and the linear dependence of rupture force on logarithmic loading rate was observed. A single energy barrier model was used to understand the binding physics and kinetics. By fitting the model with experiment data, we could acquire important kinetic parameters toff and xbeta. Then in-situ electrochemical atomic force microscopy (ECAFM) based DFS experiment was conducted to investigate the electrostatic influence upon molecular force interaction between thrombin and aptamer. The force interaction difference showed that positive electrical fields lowered the dissociation force between thrombin and aptamer, while negative electrical fields held similar force level with zero potential. The ECAFM experimental studies further support the conclusion of electrostatic actuation and modulation of the complementary pair. Besides, the root cause for the change of binding behavior and force interaction between the biomolecules under electrostatic fields is the conformational transition of the molecules, which might be illustrated by the molecular dynamics (MD) simulation. Therefore, a MD based computational study was performed on self-assembled monolayer (SAM) with polar end group under the application of electrical fields to clarify the conformational transition and associated friction change of the monomolecular thin films. The simulation results showed that positive electrical fields can generate larger conformational transition of the SAMs, which led to a greater frictional coefficient drop of the surface, while negative electrical fields kept similar conformational state and frictional response as the zero potential. The simulation result provides another explanation of the electrostatic actuation based modulation of polar molecule functionalized surface.
机译:人造成分与生物系统的无缝集成以形成优雅的生物-非生物界面或智能表面,在生物医学工程中具有广阔的应用前景。这项研究的具体目的是在静电刺激下实现生物分子之间的结合行为的激活和调节,并研究互补对之间相应的作用力相互作用。利用纳米制造技术在金底物上建立了凝血酶和DNA适体的图案化结合对,并在系统上施加了不同的电场来评估静电影响。然后使用原子力显微镜(AFM)表面成像来说明去除电场后的表面高度变化。表面的高度变化表明,正电场可以成功地打破凝血酶和适体之间的键,而适度的负电场则保持整体结构。实验研究实现了静电对和互补对调制的想法。然后,通过基于AFM的动态力谱(DFS)研究了该对之间的力相互作用。首先进行开路DFS实验以阐明凝血酶与适体之间单分子水平作用力相互作用的大小,并观察到断裂力对数加载速率的线性依赖性。使用单个能垒模型来了解结合物理和动力学。通过将模型与实验数据拟合,我们可以获得重要的动力学参数toff和xbeta。然后进行了基于原位电化学原子力显微镜(ECAFM)的DFS实验,以研究静电对凝血酶和适体之间分子力相互作用的影响。力相互作用的差异表明,正电场降低了凝血酶和适体之间的解离力,而负电场保持了相似的力水平,且电位为零。 ECAFM实验研究进一步支持了互补对的静电驱动和调制的结论。此外,在静电场下,生物分子之间的结合行为和力相互作用发生变化的根本原因是分子的构象转变,这可以通过分子动力学(MD)模拟来说明。因此,在电场的作用下,对具有极性端基的自组装单分子膜(SAM)进行了基于MD的计算研究,以阐明单分子薄膜的构象转变和相关的摩擦变化。仿真结果表明,正电场可产生较大的SAM构象转变,从而导致表面摩擦系数下降更大,而负电场则保持与零电位相似的构象状态和摩擦响应。仿真结果为基于极性分子功能化表面的静电驱动的调制提供了另一种解释。

著录项

  • 作者

    Ma, Xiao.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Mechanical.;Biophysics Biomechanics.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号