首页> 外文学位 >A neuro-fuzzy approach to the prediction and control of surface roughness during grinding.
【24h】

A neuro-fuzzy approach to the prediction and control of surface roughness during grinding.

机译:一种神经模糊方法,用于预测和控制磨削过程中的表面粗糙度。

获取原文
获取原文并翻译 | 示例

摘要

Grinding is a complex process in which many variables affect the desired surface quality. Fuzzy logic is an effective technique for the prediction and control of complex systems in the absence of accurate mathematical models. Neuro-fuzzy is a relatively new technique that overcomes limitations of the pure fuzzy approach. The adaptive neuro-fuzzy inference system (ANFIS) is one such neuro-fuzzy approach.; This thesis describes the work done to design and develop a neuro-fuzzy based system for the prediction and control of surface roughness in edge grinding. Simulation and experimental tests were conducted to validate the system. A pneumatic gantry robot was used for the grinding experiments. The work was organized into four components: (1) ANFIS tuning of a PID force controller, (2) ANFIS off-line identification of roughness, (3) ANFIS on-line prediction of roughness and (4) supervisory control of roughness with fuzzy clustering.; ANFIS was used to model the relationship between the gains of a PID force controller and the target output response as specified by the desired percent overshoot and settling time. This ANFIS based input-output model was then used to tune on-line the PID gains for different response specifications. The ANFIS based controller was able to meet the response specifications with an accuracy of 95%.; ANFIS was used to identify the roughness off-line and predict the roughness on-line. Grinding force and feed rate were used as inputs. For validation purposes, surface roughness was measured directly off-line with a roughness gauge. For on-line prediction, a piezoelectric accelerometer was used to generate an indirect measure of roughness. The power spectral density of the accelerometer signal was used as an on-line input to the ANFIS. Experiments were conducted to compare the actual and ANFIS identified and predicted values of roughness. Off-line identification accuracy was 96% and on-line prediction accuracy was 91%.; Three different fuzzy-based approaches were taken to the design of a supervisory roughness controller: (1) fuzzy-C means clustering, (2) fuzzy subtractive clustering and (3) ANFIS. It was found that fuzzy subtractive clustering (not ANFIS) gave the best combination of high accuracy (98%), low computational cycle time (0.08 s) and minimal tuning effort.
机译:磨削是一个复杂的过程,其中许多变量会影响所需的表面质量。在没有精确数学模型的情况下,模糊逻辑是一种用于预测和控制复杂系统的有效技术。神经模糊是一种相对较新的技术,它克服了纯模糊方法的局限性。自适应神经模糊推理系统(ANFIS)就是这样一种神经模糊方法。本文描述了设计和开发基于神经模糊的系统以预测和控制磨边表面粗糙度的工作。进行了仿真和实验测试以验证系统。气动龙门机器人用于研磨实验。这项工作分为四个部分:(1)PID力控制器的ANFIS调整,(2)ANFIS离线识别粗糙度,(3)ANFIS在线预测粗糙度,以及(4)通过模糊对粗糙度进行监督控制集群。 ANFIS用于对PID力控制器的增益与目标输出响应之间的关系进行建模,该关系由所需的过冲百分比和稳定时间指定。然后使用这种基于ANFIS的输入输出模型来针对不同的响应规格在线调整PID增益。基于ANFIS的控制器能够以95%的精度满足响应规范。 ANFIS用于离线识别粗糙度并在线预测粗糙度。磨削力和进给速度用作输入。为了验证,直接使用粗糙度仪离线测量表面粗糙度。为了进行在线预测,使用了压电加速度计来间接测量粗糙度。加速度计信号的功率谱密度用作ANFIS的在线输入。进行实验以比较实际和ANFIS识别的粗糙度和预测值。离线识别精度为96%,在线预测精度为91%。采用了三种不同的基于模糊的方法来设计监督粗糙度控制器:(1)Fuzzy-C均值聚类;(2)模糊减法聚类;(3)ANFIS。发现模糊减法聚类(不是ANFIS)可以实现高精度(98%),低计算周期(0.08 s)和最小调整工作的最佳组合。

著录项

  • 作者

    Samhouri, Murad S.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 320 p.
  • 总页数 320
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号