首页> 外文学位 >Investigation of Photochemical Upconversion Based on Triplet-Triplet Annihilation.
【24h】

Investigation of Photochemical Upconversion Based on Triplet-Triplet Annihilation.

机译:基于三重-三重An灭的光化学上转换研究。

获取原文
获取原文并翻译 | 示例

摘要

The potential benefits for societal adoption of solar energy are high in comparison to the adverse effects of climate change from using fossil fuels. However, the Shockley-Queisser limit sets a solar power conversion efficiency limit on all single bandgap silicon-based photovoltaic devices. Triplet-triplet annihilation upconversion (TTA-UC), which can convert the sub-bandgap photons to above-bandgap photons, has been proposed as a way to increase the solar cell efficiency. TTA-UC can be achieved with low power-density (<100 mW/cm 2), and non-coherent light as the excitation sources such as sunlight. Understanding the mechanism and increasing the efficiency of TTA-UC have an important technological implication in energy conversion, solar energy and biotechnology.;The TTA-UC process is a sequence of events: a sensitizer becomes excited and reaches a triplet state via intersystem crossing (ISC); triplet-triplet energy transfer (TTET) between sensitizer and emitter; triplet-triplet annihilation (TTA) between two emitters leading to a singlet excited state of one of them; and the final upconverted emission from the singlet excited acceptor. The studies on TTA-UC have been made a significant progressive, with varying degrees of successes. Still, there is ongoing need to better understanding the TTA-UC processes under different conditions and explore ways to enhance the efficiency of TTA-UC. This dissertation is to investigate the TTA-UC processes in different systems such as single-sensitizer/multi-acceptor systems, polymeric emitter systems, sensitizer attached on gold nanoparticles systems and TTA-UC included paramagnetic complex systems under external magnetic field. Based on these investigations, we try to figure out different ways to increase the efficiency of TTA-UC. For this purpose, several thorough investigations were carried out based on TTA-UC topics. Firstly, we constructed single-sensitizer/multi-acceptor systems, consisting of Platinum(II) octaethylporphyrin (PtOEP) as sensitizer and 9, 10-diphenylanthracene (DPA), 1,3-diphenylisobenzofuran (DPBF) and anthracene (AN) as acceptors, which display very high upconversion quantum yields. A hetero-TTA process between triplet acceptors of different types is believed to account for the synergistic effect leading to the high upconversion efficiency. Secondly, an investigation of TTA-UC based on polymeric emitters with tunable inter-chromophore distances was explored. Poly[(9-anthrylmethyl methacrylate)- co-(methyl methacrylate)] (Poly(AnMMA-co-MMA)) with different percentages of AnMMA were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization, and used as emitters in association with platinum octaethylporphyrin as sensitizer to form TTA-UC systems. It is observed that TTA-UC intensity first increases with increasing AnMMA percentage in the polymers then decreases, and ultimately disappears, upon further increasing the AnMMA percentage. Thirdly, surface plasmon induced enhancement of homogeneous and heterogeneous TTA by gold nanoparticles (AuNPs) was observed. Excitation rate and intersystem crossing efficiency of the sensitizer, and efficiency of energy transfer between sensitizer and acceptor are believed to be enhanced by the surface plasmon of AuNPs, leading to the enhancement of overall TTA efficiency.;To sum up, these results shed light on the key factors affecting TTA-UC processes in different systems, provide ways to enhance TTA-UC efficiency, and have implication to the applications of TTA-UC in display, bioassay, bioimaging and solar energy, with promise for more.
机译:与使用化石燃料引起的气候变化不利影响相比,社会采用太阳能的潜在好处是很高的。但是,Shockley-Queisser限制为所有单带隙硅基光伏设备设置了太阳能转换效率限制。已经提出了三重态-三重态(灭上转换(TTA-UC),其可以将子带隙光子转换为带隙以上光子,作为提高太阳能电池效率的一种方法。可以以低功率密度(<100 mW / cm 2)以及非相干光作为激发源(例如太阳光)来实现TTA-UC。了解TTA-UC的机理并提高其效率在能量转换,太阳能和生物技术方面具有重要的技术意义。; TTA-UC过程是一系列事件:敏化剂变得兴奋并通过系统间交叉而达到三重态( ISC);敏化剂和发射体之间的三重态-三重态三重态能量传递(TTET);两个发射器之间的三重态-三重态an灭(TTA),导致其中一个发生单重激发态;以及来自单重态激发受体的最终上转换发射。关于TTA-UC的研究已经取得了重大进展,取得了不同程度的成功。尽管如此,仍需要更好地了解在不同条件下的TTA-UC过程,并探索提高TTA-UC效率的方法。本文旨在研究不同体系下的TTA-UC过程,如单敏/多受体体系,聚合物发射体体系,附着在金纳米颗粒体系上的敏化剂以及在外部磁场下包含顺磁性复合体系的TTA-UC。基于这些调查,我们试图找出提高TTA-UC效率的不同方法。为此,基于TTA-UC主题进行了几项彻底的调查。首先,我们构建了单敏化剂/多受体系统,该系统由八烷基铂卟啉(PtOEP)作为敏化剂,9,10-二苯基蒽(DPA),1,3-二苯基异苯并呋喃(DPBF)和蒽(AN)组成,显示出很高的上转换量子产率。据信,不同类型的三重态受体之间的异质-TTA过程是导致高上转换效率的协同效应的原因。其次,研究了基于具有可调生色团距离的聚合物发射体的TTA-UC研究。使用可逆的加成-断裂链转移(RAFT)聚合合成了具有不同百分比的MMA的聚[(甲基丙烯酸9-甲基丙烯酸甲酯)-共-(甲基丙烯酸甲酯)](Poly(AnMMA-co-MMA)),并将其用作发射体。与八乙基卟啉铂作为敏化剂结合形成TTA-UC系统。可以观察到,随着聚合物中AnMMA百分比的增加,TTA-UC强度首先增加,然后降低,最终消失,进一步提高AnMMA百分比。第三,观察到表面等离激元诱导的金纳米颗粒(AuNPs)增强了同质和异质TTA。增敏剂的激发速率和系统间交叉效率以及增敏剂和受体之间的能量转移效率被认为是通过AuNPs的表面等离激元提高的,从而导致整体TTA效率的提高。影响TTA-UC工艺在不同系统中的关键因素,提供提高TTA-UC效率的方法,并暗示TTA-UC在显示,生物测定,生物成像和太阳能中的应用,还有更多的希望。

著录项

  • 作者

    Cao, Xian.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号