首页> 外文学位 >Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays.
【24h】

Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays.

机译:带电两亲物的静电驱动组装,形成结晶的膜,囊泡和纳米纤维阵列。

获取原文
获取原文并翻译 | 示例

摘要

Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale.;We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes.;Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.
机译:带电的两亲分子可以自组装成各种各样的物体,包括膜,囊泡和纤维。这些微米至纳米级的结构由于其广泛的应用而受到越来越多的关注,特别是在生物技术和生物医学中。本文研究了三种自组装体系:+ 3 / -1自组装阳离子膜,+ 2 / -1自组装阳离子膜和+1自组装纳米纤维。透射电子显微镜(TEM)结合同步加速器小和广角X射线散射(SAXS和WAXS)表征了从介观到纳米尺度的共组装结构;我们设计了一个+3和-1离子两亲物体系共组装成具有多种几何形状(类似于多面体细胞晶体壳和古细菌壁膜)的晶体离子双层囊泡。两亲物的离子化程度及其分子间静电相互作用可通过改变pH值来控制。这些膜的分子堆积显示出随着pH值的增加从六边形到矩形C到六边形的相变,从而导致膜形态发生重大变化。还研究了+2和-1离子两亲物的类似混合物。除了控制pH值以控制头基吸引外,我们还调节两亲物的尾巴长度以控制尾巴之间的范德华相互作用。建立了二维相图以显示如何使用pH和尾巴长度来控制膜内的分子间堆积。;还研究了另一种由带正电的两亲物形成的自组装纳米纤维网络的系统。这些高度带电的纤维互相排斥,并堆积成六方晶格,其晶格常数至少为纤维直径的八倍。 d间距和晶体结构可以通过改变溶液浓度和温度来控制。

著录项

  • 作者

    Leung, Cheuk Yui Curtis.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Physics Molecular.;Chemistry Inorganic.;Nanoscience.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号