首页> 外文学位 >The Geohydrology of Multiphase Flow and Petroleum Migration in Faulted Sedimentary Basins.
【24h】

The Geohydrology of Multiphase Flow and Petroleum Migration in Faulted Sedimentary Basins.

机译:断层沉积盆地中的多相流动和石油运移的地球水文。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, I have developed a 2-D multiphase fluid flow model, coupled to heat flow, using a hybrid finite element and finite volume method to address these petroleum migration and entrapment issues on spatially large and long temporal scales. The newly developed multi-phase flow program (TUFTS-FV) is verified by comparison with analytic solution, and applied to solve M. King Hubbert's (1953) problem numerically for obtaining new insights on hydrodynamic conditions that control petroleum migration and entrapment mechanisms.;I applied this method to solve fundamental issues of long-distance petroleum migration and accumulation in the Los Angeles basin, which is intensely faulted and disturbed by transpressional tectonic stresses, and host to the world's richest oil accumulation. To constrain the model, known subsurface geology and fault structures were rendered using geophysical logs from industry exploration boreholes and published seismic profiles. Plausible multiphase model parameters were estimated, both from known fault permeability measurements in similar strata in the Santa Barbara basin, and from known formation properties obtained from numerous oil fields in the Los Angeles basin. I then developed reservoir-scale hydrocarbon entrapment models to investigate the effects of the episodic fluid flow phenomenon triggered by seismic activities along the Newport-Inglewood fault zone (NIFZ) in the Los Angeles basin, California. Sensitivity tests on fault permeability and the frequency of episodic pulses were performed to investigate their effects on spatial and temporal distribution of hydrocarbons, which mainly accumulated along the fault zone and adjacent reservoir sands.;Simulations show that a combination of continuous hydrocarbon generation and primary migration from upper Miocene source rocks in the central Los Angeles basin synclinal region, coupled with subsiding basin fluid dynamics, favored the massive accumulation and alignment of hydrocarbon pools along the NIFZ. According to my multiphase flow calculations, the maximum formation water velocities within fault zones likely ranged between 0.5 and 1.0 m/yr during the middle Miocene to Pliocene (13 to 2.6 Ma). The estimated time for long-distance (∼ 25 km) petroleum migration from source beds in the central basin to oil fields along the NIFZ is approximately 90,000 ∼ 220,000 years, depending on the effective permeability assigned to the faults (k∼ 5 to 50 millidarcys) and adjacent interbedded sandstone and siltstone "petroleum aquifers". With a fault permeability of 20 md (2.0×10-14 m2), the total petroleum volume of oil reservoirs located along the NIFZ (∼ 2 billion barrels) would have accumulated likely over 180,000 years or less. The results also suggest that besides the thermal and structural history of the basin, the fault permeability, capillary pressure, and the juxtaposed configuration of aquifer and aquitard layers played an important role in controlling petroleum migration rates, patterns of flow, and the overall fluid mechanics of petroleum accumulation.;Episodic flow enhances hydrocarbon accumulation by enabling step-wise build-up in adjacent sedimentary formations due to temporally introduced high pore fluid pressure and permeability during the fault rupture. These episodic migration models could be more preferable than continuous models, considering current hydrocarbon distribution and tectonic settings of the Los Angeles basin.;Sensitivity test results suggest that transient fault permeability and pore fluid pressure fluctuation are crucial factors for distributing hydrocarbon accumulations in the fault zone, and they also play important roles to determine time-scale of reservoir formation. Under assumptions that fault permeability and pore pressure fluctuate within the range of 1 ∼ 1000 md and 10 ∼ 80% of lithostatic pressure, the maximum petroleum velocity at peak of episodic flow pulse is approximately 1.0-2.0 m/yr, and the current level of total oil reserve in the Inglewood oil field (∼ 450 million barrels oil equivalent) can be reached in about 24,000 years if the seismically induced fluid flow occurs every 3,000 years. (Abstract shortened by UMI.).
机译:在本文中,我建立了一个二维多相流模型,耦合了热流,使用混合有限元和有限体积方法来解决这些石油在空间上和长期上的迁移和滞留问题。 ;通过与解析解进行比较,验证了新开发的多相流程序(TUFTS-FV),并将其应用于数值求解M. King Hubbert(1953)的问题,从而获得有关控制油气运移和夹带机制的流体动力学条件的新见识。我用这种方法解决了洛杉矶盆地长距离油气运移和聚集的根本问题,该盆地受到超压构造应力的强烈断层和干扰,是世界上石油储量最丰富的地方。为了约束该模型,使用了来自工业勘探井眼的地球物理测井资料和已发布的地震剖面图,绘制了已知的地下地质和断层结构。从圣巴巴拉盆地类似地层的已知断层渗透率测量值,以及从洛杉矶盆地众多油田获得的已知地层特性,估计了合理的多相模型参数。然后,我开发了储层规模的碳氢化合物截留模型,以研究加利福尼亚州洛杉矶盆地的纽波特-英格伍德断裂带(NIFZ)地震活动引发的间歇性流体流动现象的影响。对断层渗透率和偶发脉冲的频率进行了敏感性测试,以研究它们对油气的时空分布的影响,这些油气主要聚集在断层带和邻近的储层砂岩中。来自洛杉矶中部盆地中斜地区中新世上层烃源岩,再加上盆地的流体动力学,有利于NIFZ沿线油气藏的大量聚集和排列。根据我的多相流计算,在中新世至上新世(13至2.6 Ma)期间,断层带内的最大地层水速度可能在0.5至1.0 m / yr之间。从中央盆地的烃源层到NIFZ沿油田的长距离(〜25 km)石油迁移的估计时间约为90,000〜220,000年,具体取决于分配给断层的有效渗透率(k〜5至50毫达西) )和相邻的互层砂岩和粉砂岩“石油含水层”。断层渗透率为20 md(2.0×10-14 m2),沿NIFZ分布的储油库的总石油量(约20亿桶)可能已经累积了18万年或更短的时间。研究结果还表明,除了盆地的热和结构史外,断层渗透率,毛细压力以及含水层和阿奎塔尔层的并置构造在控制石油运移速率,流动模式和整体流体力学方面也起着重要作用。由于断层破裂在时间上引入了较高的孔隙流体压力和渗透率,因此,通过使相邻沉积层中的逐步堆积能够实现渐进流动,从而增加了油气的聚集。考虑到洛杉矶盆地的当前油气分布和构造环境,这些间歇迁移模型可能比连续模型更可取。;敏感性测试结果表明,瞬时断层渗透率和孔隙流体压力波动是在断层带分布油气成藏的关键因素,它们在确定储层形成时间尺度方面也起着重要作用。假设断层渗透率和孔隙压力在1〜1000 md范围内和岩石静压的10〜80%范围内波动,则在偶发流动脉冲峰值处的最大石油速度约为1.0-2.0 m / yr,当前的水平如果地震引发的流体流每3000年发生一次,英格尔伍德油田的总石油储量(约4.5亿桶油当量)可在约24,000年内达到。 (摘要由UMI缩短。)。

著录项

  • 作者

    Jung, Byeongju.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Hydrology.;Engineering Geological.;Petroleum Geology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 375 p.
  • 总页数 375
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号