首页> 外文学位 >Improved collocation methods with application to six-degree-of-freedom trajectory optimization.
【24h】

Improved collocation methods with application to six-degree-of-freedom trajectory optimization.

机译:改进的搭配方法,应用于六自由度轨迹优化。

获取原文
获取原文并翻译 | 示例

摘要

An improved collocation method is developed for a class of problems that is intractable, or nearly so, by conventional collocation. These are problems in which there are two distinct timescales of the system states, that is, where a subset of the states have high-frequency variations while the remaining states vary comparatively slowly. In conventional collocation, the timescale for the discretization would be set by the need to capture the high-frequency dynamics. The problem then becomes very large and the solution of the corresponding nonlinear programming problem becomes geometrically more time consuming and difficult. A new two-timescale discretization method is developed for the solution of such problems using collocation. This improved collocation method allows the use of a larger time discretization for the low-frequency dynamics of the motion, and a second finer time discretization scheme for the higher-frequency dynamics of the motion. The accuracy of the new method is demonstrated first on an example problem, an optimal lunar ascent. The method is then applied to the type of challenging problem for which it is designed, the optimization of the approach to landing trajectory for a winged vehicle returning from space, the HL-20 lifting body vehicle. The converged solution shows a realistic landing profile and fully captures the higher-frequency rotational dynamics. A source code using the sparse optimizer SNOPT is developed for the use of this method which generates constraint equations, gradients, and the system Jacobian for problems of arbitrary size. This code constitutes a much-improved tool for aerospace vehicle design but has application to all two-timescale optimization problems.
机译:针对传统的配置难以解决或几乎解决的一类问题,开发了一种改进的配置方法。这些问题是系统状态有两个不同的时间尺度,即状态的子集具有高频变化,而其余状态变化相对较慢。在常规配置中,离散化的时间尺度将根据捕获高频动态的需求来设置。于是问题变得非常大,并且相应的非线性编程问题的解决方案在几何上变得更加耗时且困难。为了解决此类问题,人们提出了一种新的两时尺度离散化方法。这种改进的配置方法允许将较大的时间离散化用于运动的低频动力学,而将第二种更精细的时间离散化方案用于运动的高频动力学。首先在一个示例问题(最佳登月)上证明了新方法的准确性。然后将该方法应用于为其设计的挑战性问题类型,即从太空返回的有翼飞行器HL-20升降车的着陆轨迹方法的优化。融合的解决方案显示了逼真的着陆轮廓,并完全捕获了高频旋转动力学。为此,开发了使用稀疏优化器SNOPT的源代码,该方法可生成约束方程,梯度和任意大小问题的系统雅可比行列式。该代码构成了用于航空航天器设计的大量改进的工具,但已应用于所有两个时标优化问题。

著录项

  • 作者

    Desai, Prasun N.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号