首页> 外文学位 >Numerical modeling of space charge dynamics and electrical breakdown in solid dielectrics.
【24h】

Numerical modeling of space charge dynamics and electrical breakdown in solid dielectrics.

机译:固体电介质中空间电荷动力学和电击穿的数值模型。

获取原文
获取原文并翻译 | 示例

摘要

A general numerical model has been developed to predict the dielectric breakdown strength of insulating materials. Low-alkali boroaluminosilicate glasses are of interest for electrostatic energy storage since they have exceptionally high dielectric breakdown strength. Polymer dielectric such as polyethylene is the state-of-the art material for power transmission cables. Therefore, understanding their breakdown mechanisms and predicting their strengths are important theoretically as well as practically. This research focuses on understanding electrical conduction and space charge dynamics and their effects on electrical breakdown strengths. Conduction mechanisms for AF45 glass (one kind of low-alkali BAS) below 473 K were studied using Schottky, Poole-Frenkel, space-charge-limited current, and ionic hopping conduction mechanism. This study showed that the electrical conduction in low-alkali BAS glass is governed by a combination of two or more conduction mechanisms. Cation depletion phenomena during thermal poling of low-alkali BAS is an important precursor to dielectric breakdown. Numerical models including multiple charge carriers such as Na+, nonbridging oxygen ion, H3O+/H+, Ba2+ were developed to predict depletion widths under anode and electric field distribution within the glass. These numerical models accurately predicted widths of 2.1 mum, which were very close to the experimentally determined values. Moreover, the calculated electric field from a numerical model assuming Na+, H3O+/H +, Ba2+ migration could reproduce the experimentally determined electric field distribution. Numerical breakdown models were developed assuming electronic conduction or ionic redistribution and electronic breakdown for low-alkali BAS glass. The numerical model assuming electronic conduction predicted weakly thickness dependent breakdown strengths below 20 mum although it cannot predict strongly thickness dependent breakdown strengths above 20 mum. Another combined breakdown model assuming ionic redistribution and electronic breakdown predicted two distinct regions in AF45 glass for thickness dependence of breakdown strengths. Temperature dependence of breakdown strengths for AF45 glass predicted by the model assuming ionic redistribution and electronic breakdown agreed well with experimental results. This model showed that the change in breakdown strengths with temperature depended on the initial mobile sodium ion concentration. Thermal and electronic breakdown combined model was also applied to low-density polyethylene where electrical conduction is dominated by electrons and holes. Upon high electric fields these carriers move and produce space charges which enhance local electric field near the anode. This breakdown model predicts weakly thickness dependent breakdown strengths at room temperature which is also proved by other researchers. Furthermore, the relationship between the breakdown strength and voltage ramp rate can be reproduced in this model.
机译:已经开发了通用数值模型来预测绝缘材料的介电击穿强度。低碱金属硼铝硅酸盐玻璃因其具有极高的介电击穿强度,因此对于静电能量存储非常重要。诸如聚乙烯之类的聚合物电介质是用于电力传输电缆的最新材料。因此,了解它们的分解机理并预测其强度在理论上和实践上都是重要的。这项研究的重点是了解导电和空间电荷动力学及其对电击穿强度的影响。利用肖特基,普尔-弗伦克,空间电荷限制电流和离子跳跃传导机制研究了473 K以下的AF45玻璃(一种低碱性BAS)的传导机制。这项研究表明,低碱性BAS玻璃的导电受两种或多种导电机制的共同控制。低碱BAS热极化过程中的阳离子耗竭现象是介电击穿的重要先兆。建立了包含多种电荷载体(如Na +,非桥键氧离子,H3O + / H +,Ba2 +)的数值模型,以预测阳极下方的耗尽宽度和玻璃内的电场分布。这些数值模型准确地预测了2.1毫米的宽度,非常接近实验确定的值。此外,从假设Na +,H3O + / H +,Ba2 +迁移的数值模型计算出的电场可以重现实验确定的电场分布。建立了数值分解模型,并假设了低碱性BAS玻璃的电子传导或离子再分布以及电子分解。假设电子传导的数值模型可以预测低于20 mum的与厚度无关的击穿强度,尽管它无法预测高于20 mm的与厚度相关的击穿强度。假设离子再分布和电子击穿的另一个组合击穿模型预测了AF45玻璃中两个不同区域的击穿强度与厚度的关系。假设离子再分布和电子击穿,该模型预测的AF45玻璃的击穿强度与温度的关系与实验结果吻合良好。该模型表明击穿强度随温度的变化取决于初始移动钠离子浓度。热击穿和电子击穿组合模型也被应用于低密度聚乙烯,其中电子和空穴占主导地位。在高电场下,这些载流子移动并产生空间电荷,从而增强阳极附近的局部电场。这种击穿模型可以预测室温下与厚度无关的击穿强度,这也得到了其他研究人员的证明。此外,可以在该模型中再现击穿强度和电压斜坡率之间的关系。

著录项

  • 作者

    Choi, Doo Hyun.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Materials Science.;Engineering General.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号