首页> 外文学位 >Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models.
【24h】

Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models.

机译:在模型层次中研究气候系统对气候工程的响应。

获取原文
获取原文并翻译 | 示例

摘要

Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated. We show that upon cessation, an abrupt, spatially broad, and sustained warming over land occurs that is well outside the bounds of 20th century climate variability. We then use an upwelling-diffusion energy balance climate model to further show the sensitivity of these trends to background greenhouse gas emissions, termination year, and climate sensitivity. We find that the rate of warming from cessation of solar radiation management -- of critical importance for ecological and human systems -- is principally controlled by the background greenhouse gas concentrations. It follows that the only way to avoid the risk of an abrupt and dangerous warming that is inherent to the large-scale implementation of solar radiation management is to also strongly reduce greenhouse gas emissions. The climate system responds to radiative forcing on a diverse spectrum of timescales, which will affect what goals can be achieved for a given stratospheric aerosol implementation. We next investigate how different rates of stratospheric sulfate aerosol deployment affect what climate impacts can be avoided by simulating two rates of increasing stratospheric sulfate concentrations in a fully-coupled global climate model. We find that disparate goals are achieved for different rates of deployment; for a slow ramping of sulfate, land surface temperature trends remain small but sea levels continue to rise for decades, whereas a quick ramp-up of sulfate yields large land surface cooling trends and immediately reduces sea level. However, atmospheric circulation changes also act to create a large-scale subsurface ocean environment around Antarctica that is favorable for increased basal melting of ice sheet outlets, thereby leaving the potential open for increased sea level rise even in the absence of large atmospheric surface warming. We show that instead, when greenhouse gases are abruptly returned to preindustrial levels, circulation anomalies are reversed, and the subsurface ocean environment does not pose the same threat to Antarctic ice sheets. We conclude that again, reduction of greenhouse gases is the preferred strategy for avoiding climate impacts of global warming.
机译:人为排放的温室气体导致的全球变暖正在对全球各种生态系统和人类系统造成负面影响,并且随着气候继续变暖,预计这些影响将加剧。在没有有意义的温室气体减排的情况下,已经提出了新的策略来设计气候,以防止进一步的变暖并避免相关的气候影响。我们在这里研究一种这样的策略,属于“太阳能辐射管理”的范畴,在该策略中,将硫酸盐气溶胶注入平流层。我们使用具有耦合的混合层深度海洋和完全耦合的海洋总环流模型的全球气候模型,通过平衡二氧化碳的增加和平流层硫酸盐浓度的增加来模拟气候的稳定。我们评估是否可以避免严重的气候影响,例如北极海冰融化,热带作物歉收或西南极冰盖的不稳定。我们发现,虽然使用平流层气雾剂可以避免发生热带气候紧急情况,但由于这些地区的大量剩余气候变化(部分原因是由于残留的大气环流异常),无法保证避免极性紧急情况。我们还发现,由于其动态反馈,包含完全耦合的海洋对于确定区域气候响应非常重要。平流层硫酸盐气雾剂的注入以及更广泛的太阳辐射管理的功效取决于其无限期维持的能力,而不会受到各种可能来源的干扰,例如技术失败,全球合作破裂,资金不足或负面影响。意外的后果。接下来,我们考虑这样一种情景:在实施了数十年的时间后,平流层硫酸盐注入突然终止,而温室气体排放却没有减弱。我们表明,停止后,陆地上会发生突然的,空间上广泛的持续变暖,这远远超出了20世纪气候变化的范围。然后,我们使用上升流-扩散能量平衡气候模型进一步显示这些趋势对背景温室气体排放,终止年和气候敏感性的敏感性。我们发现,停止太阳辐射管理对生态系统和人类系统至关重要的升温速率主要受背景温室气体浓度控制。因此,避免大规模实施太阳辐射管理所固有的突然而危险的变暖风险的唯一方法就是也要大大减少温室气体的排放。气候系统在各种时间尺度上对辐射强迫做出响应,这将影响给定的平流层气溶胶实施方案可以实现的目标。接下来,我们将通过模拟完全耦合的全球气候模型中平流层硫酸盐浓度的两种增加速率,来研究不同水平的平流层硫酸盐气溶胶部署速率如何影响可避免的气候影响。我们发现针对不同的部署速率可以实现不同的目标;对于缓慢增加的硫酸盐,地表温度趋势仍然很小,但海平面持续上升了几十年,而快速增加硫酸盐会产生较大的地表冷却趋势,并立即降低海平面。但是,大气环流的变化也会在南极洲周围形成一个大规模的地下海洋环境,这有利于增加冰盖出口的基础融化,从而即使在没有较大的大气表面变暖的情况下,也有可能使海平面上升。我们表明,相反,当温室气体突然返回到工业化前的水平时,循环异常被逆转,并且地下海洋环境对南极冰盖不会构成相同的威胁。我们再次得出结论,减少温室气体是避免全球变暖对气候的影响的首选策略。

著录项

  • 作者

    McCusker, Kelly E.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Atmospheric Sciences.;Climate Change.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号