首页> 外文学位 >Mechanism of substrate protein remodeling by molecular chaperones.
【24h】

Mechanism of substrate protein remodeling by molecular chaperones.

机译:分子伴侣分子对底物蛋白质重塑的机制。

获取原文
获取原文并翻译 | 示例

摘要

Protein quality control regulates the natural load of proteins by providing folding assistance or degradation mechanism to prevent misfolding or aggregation. It is maintained by the complex regulatory network of molecular chaperons. The study of such fundamental biological system helps in designing different biological applications like targeted therapeutic treatments. The goal of this work is to elucidate protein quality control mechanisms associated with chaperonin folding assistance and protein degradation. Chaperonins are large double ring assemblies that assist folding of substrate proteins (SPs) under non-permissive conditions. Spectacular ATP driven conformational changes take place within each chaperonin ring. Distinct allosteric mechanisms have been described for the two chaperonin classes. Bacterial (group I) chaperonins, such as GroEL undergo concerted subunit motions within each ring, while archaeal and eukaryotic chaperonins (group II) undergo sequential subunit motions. In the protein degradation pathway, nanomachines such as ClpP cleave the unwanted protein. Here we study four aspects regarding this problem: (1) Allosteric mechanisms of group II chaperonin, (2) Kinetics of multi-domain protein folding confined to cylindrical nanopores (3). Structural and bioinformatics analyses to understand substrate recognition mechanisms in group II chaperonin and (4) Allosteric mechanisms of ClpP. We use normal mode analysis to understand how distinct allosteric mechanisms arise in two groups of chaperonins. Our results show that the lower frequency modes are important for the thermosome monomers whereas distinct higher frequency modes are attributed to functional specialization of these subunit types. Our results also indicate weaker long-range inter-subunit correlation of amino acid pairs in archaeal chaperonin compared to GroEL. These results support distinct allosteric mechanisms of the two chaperonin types. In order to understand the effect of encapsulation inside the chaperonin cavity, we studied the confinement of protein inside nanopores. We perform coarse-grained Langevin dynamics simulations of actin confined to single-walled carbon nanotubes. Actin is a multi-domain protein which comprises two non-contiguous subdomains and its folding is strictly dependent on the eukaryotic chaperonin CCT. Our bulk simulations show that long-distance native contacts are difficult to form, restricting actin to fold spontaneously. By contrast, weak confinement promotes folding and enhances the overall stability of the native state. To probe conditions that mimic the chaperonin action, we also perform folding simulations of actin in quasi-native conformations. In this case, we find that folding yield is optimized in a moderate confinement regime. To understand the substrate recognition mechanism, we used structural and bioinformatics analyses. Based on these studies we propose substrate binding sites in helical protrusion and two helices. The conservation of hydrophobic and charged amino acids at these sites indicates universal and specific aspects of the substrate recognition mechanisms. We further elucidate substrate specific mechanisms by identifying conservation of negative or positive character of the charged amino acid within the subsets of eukaryotic subunits. To understand the allosteric motion of ClpP, we use normal mode analysis. Our results indicate that multiple higher frequency modes contribute in functional role of ClpP transitions.
机译:蛋白质质量控​​制通过提供折叠辅助或降解机制来防止错误折叠或聚集,从而调节蛋白质的自然负荷。它由分子伴侣的复杂调控网络维持。对这种基本生物学系统的研究有助于设计不同的生物学应用,例如靶向治疗。这项工作的目的是阐明与伴侣蛋白折叠辅助和蛋白质降解有关的蛋白质质量控​​制机制。伴侣蛋白是大的双环组件,可在非允许条件下辅助底物蛋白(SP)的折叠。壮观的ATP驱动的构象变化发生在每个分子伴侣环内。对于两种伴侣蛋白类,已经描述了不同的变构机制。细菌(I类)伴侣蛋白,例如GroEL,在每个环内经历一致的亚基运动,而古细菌和真核伴侣蛋白(II组)经历连续的亚基运动。在蛋白质降解途径中,诸如ClpP的纳米机器会裂解不需要的蛋白质。在这里,我们研究有关此问题的四个方面:(1)II类伴侣蛋白的变构机制,(2)局限于圆柱形纳米孔的多域蛋白折叠动力学(3)。结构和生物信息学分析以了解II组伴侣蛋白中的底物识别机制和(4)ClpP的变构机制。我们使用正常模式分析来了解两组伴侣蛋白中如何出现不同的变构机制。我们的结果表明,低频模式对于恒温单体非常重要,而明显的高频模式则归因于这些亚基类型的功能特殊化。我们的结果还表明,与GroEL相比,古细菌伴侣蛋白中氨基酸对的远距离亚单位相关性较弱。这些结果支持两种伴侣蛋白类型的独特的变构机制。为了了解伴侣蛋白腔内包封的作用,我们研究了纳米孔内蛋白质的封闭。我们对局限于单壁碳纳米管的肌动蛋白进行粗粒度的Langevin动力学模拟。肌动蛋白是一种多结构域蛋白,包括两个不连续的亚结构域,其折叠严格依赖于真核伴侣蛋白CCT。我们的大量模拟表明,难以形成长距离本机接触,从而限制了肌动蛋白自发折叠。相比之下,弱禁闭会促进折叠并增强原始状态的整体稳定性。为了探查模仿伴侣蛋白作用的条件,我们还对准天然构象的肌动蛋白进行折叠模拟。在这种情况下,我们发现在中等限制条件下可以优化折叠产量。为了了解底物识别机制,我们使用了结构和生物信息学分析。基于这些研究,我们提出了螺旋突起和两个螺旋中的底物结合位点。在这些位点上疏水性和带电氨基酸的保守性表明底物识别机制的普遍和特定方面。我们通过鉴定真核亚基子集内带电氨基酸的负性或正性保守性,进一步阐明了底物的特定机制。要了解ClpP的变构运动,我们使用正常模式分析。我们的结果表明,多个更高频率的模式有助于ClpP转换的功能性作用。

著录项

  • 作者

    Shrestha, Pooja.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Biophysics General.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号