首页> 外文学位 >Determination of effective riser sleeve thermophysical properties for simulation and analysis of riser sleeve performance.
【24h】

Determination of effective riser sleeve thermophysical properties for simulation and analysis of riser sleeve performance.

机译:确定冒口套管的有效热物理特性,以模拟和分析冒口套管的性能。

获取原文
获取原文并翻译 | 示例

摘要

Riser sleeve thermophysical properties for simulation are developed using an inverse modeling technique. Casting experiments using riser sleeves are performed in order to measure temperatures in the liquid steel, the riser sleeve, and the sand mold. Simulations are created and designed to replicate the casting experiments. Riser sleeve material thermophysical properties are iteratively modified until agreement is achieved between the simulation and the measured data. Analyses of sleeve material performance are carried out using the developed thermophysical properties. The modulus extension factor (MEF) is used to quantify sleeve performance and is determined for all riser sleeve materials studied here. Values are found to range from 1.07 to 1.27. A sleeve material's effects on casting yield are shown to depend only on the MEF and therefore a sleeve's exothermic or insulating properties serve only to increase the overall quality of the sleeve, expressed by the MEF, and do not independently affect the casting yield at any casting size studied here. The use of riser sleeves is shown to increase the maximum yield up to 40% for chunky castings, however increases of only 8% are observed for very rangy castings. Riser sleeve thickness is shown to be extremely influential on casting yield. Scaling the sleeve thickness by the riser diameter shows that, for a typical sleeve, an optimum riser sleeve thickness is 0.2 times the riser diameter for chunky castings. A scaled sleeve thickness of 0.1 is found to be an optimum sleeve thickness for very rangy castings. Below a scaled sleeve thickness of 0.1 sleeve performance is found to be highly sub-optimal.
机译:使用逆建模技术开发了用于模拟的冒口套筒热物理性质。为了测量液态钢,冒口套筒和砂型中的温度,进行了使用冒口套筒的铸造实验。创建模拟并设计为复制铸造实验。迭代地改变冒口套筒材料的热物理性质,直到在模拟和测量数据之间达成一致。使用已开发的热物理性质进行套管材料性能分析。模数扩展因子(MEF)用于量化套筒性能,并针对此处研究的所有立管套筒材料确定。发现该值的范围是1.07至1.27。套筒材料对铸件成品率的影响仅取决于MEF,因此,套筒的放热或绝缘性能仅用于提高套筒的整体质量(由MEF表示),并且不会独立影响任何铸造的铸件成品率尺寸在这里学习。对于厚实的铸件,使用冒口套筒可将最大产量提高40%,但是对于非常粗大的铸件,仅可提高8%。冒口套筒的厚度显示出对铸件产量的极大影响。通过冒口直径对套筒厚度进行缩放显示,对于典型的套筒,最佳冒口套筒厚度为块状铸件的冒口直径的0.2倍。发现按比例缩放的套筒厚度为0.1时,对于非常广泛的铸件来说是最佳的套筒厚度。在标称套筒厚度低于0.1时,发现套筒性能极差。

著录项

  • 作者

    Williams, Thomas John.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Mechanical engineering.;Materials science.
  • 学位 M.S.
  • 年度 2016
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号