首页> 外文学位 >Control-oriented modeling, state-of-charge, state-of-health, and parameter estimation of batteries.
【24h】

Control-oriented modeling, state-of-charge, state-of-health, and parameter estimation of batteries.

机译:面向控制的建模,充电状态,健康状态和电池参数估计。

获取原文
获取原文并翻译 | 示例

摘要

In this research, we develop a reduced-order Lead-Acid battery model from first principles using linearization and the Ritz discretization method. The model, even with a low-order discretization, accurately predicts the voltage response to a dynamic pulse current input and outputs spatially distributed variables of interest.;As an efficient first principles model, the Ritz model makes an excellent candidate for Battery Management System (BMS) model design. Also, a dynamic averaged model is developed from the Ritz model and realized by an equivalent circuit. The circuit resistances and capacitances depend on electrochemical parameters, linking the equivalent circuit model to the underlying electrochemistry of the first principles model.;Among those built-in functionalities of the BMS in a HEV, the State-Of-Charge (SOC) estimation is crucial. SOC is the overall remaining charge in percentage inside a defined unit (cell, battery, module, or battery pack.). For an electric vehicle, the SOC is similar to the remaining fuel for a vehicle powered by internal combustion engine. State-Of-Charge (SOC) estimation for Valve-Regulated Lead-Acid (VRLA) batteries is complicated by the switched linear nature of the underlying dynamics. A first principles nonlinear model is simplified to provide two switched linear models and linearized to produce charge, discharge, and averaged models. Luenberger and switched SOC estimators are developed based on these models and propogated using experimental data. A design methodology based on Linear Matrix Inequalities (LMIs) is used in the switched SOC estimator design to obtain a switched Luenberger observer with guaranteed exponential stability. The results show that estimation errors are halved by including switching in the observer design.;To fully utilize a Lead-Acid cell also requires real-time estimates of its State-Of- Power (SOP) and State-Of-Health (SOH) to efficiently allocate power and energy amongst the cells in a pack. SOP and SOH are inversely and directly proportional to cell resistance and capacity, respectively. In this research, the Least Squares Method estimates the coefficients of a second order transfer function using experimental voltage and current data from new, aged, and dead Valve Regulated Lead-Acid batteries. The coefficients are explicitly related to the cell ohmic resistance, capacity, charge transfer resistance, and double layer time constant using a fundamental model of the cell. The ohmic resistance estimate increases monotonically with age, providing an estimate of SOP. The capacity estimate decreases monotonically with age, matching the actual capacity loss for aged cells. Finally, the voltage estimate error can be used as a SOH/SOP estimator and quantify the reliability of the parameter estimates. The first pulse after a long rest period shows the highest estimation error.;In battery systems, the parameters often vary with SOC, SOH, and operating conditions. Accurate and fast battery parameter measurement methods are desirable in many applications. Solid phase diffusivity Ds is one of the first parameters to be measured in a new Lithium-Ion cell design because it dominates the electrochemical kinetics. Amongst the D s measurement methods, the Galvanostatic Intermittent Titration Technique (GITT) is easy to implement and univerally accepted as the standard for diffusivity measurement. The accuracy of GITT, however, has not been reported, because there is no direct measurement method of Ds. In this research, we develop a Least Squares Galvanostatic Intermittent Titration Technique (LS-GITT) that uses all of the voltage data from a GITT test to optimally tune the diffusivity in a reduced order solid phase diffusion model. The accuracy of the GITT and LS-GITT are evaluated using voltage predication error RMS. Based on experimental results from a NCM half cell, LS-GITT is more accurate than GITT, sometimes by several orders of magnitude. LS-GITT gives results accurate to 1 mV RMS from 15% - 100% SOC while GITT provides that level of accuracy over less than half that range. Neither technique provides accurate Ds measurements below 10% SOC. (Abstract shortened by UMI.).
机译:在这项研究中,我们从使用线性化和Ritz离散化方法的第一原理开发了降阶铅酸电池模型。即使是低阶离散模型,该模型也可以准确预测对动态脉冲电流输入的电压响应,并输出感兴趣的空间分布变量。;作为高效的第一原理模型,Ritz模型是电池管理系统的绝佳候选者( BMS)模型设计。此外,从Ritz模型开发了动态平均模型,并通过等效电路实现。电路电阻和电容取决于电化学参数,将等效电路模型与第一原理模型的基本电化学联系在一起;在HEV中BMS的内置功能中,充电状态(SOC)估算为关键。 SOC是指定义的单位(电池,电池,模块或电池组)内的总剩余电量百分比。对于电动车辆,SOC类似于由内燃机驱动的车辆的剩余燃料。阀控铅酸(VRLA)电池的充电状态(SOC)估计由于基本动态特性的转换线性特性而变得复杂。简化了第一原理非线性模型,以提供两个开关线性模型,并对其进行了线性化处理,以产生充电,放电和平均模型。基于这些模型开发了Luenberger和开关SOC估算器,并使用实验数据进行了推广。在开关SOC估计器设计中使用了基于线性矩阵不等式(LMI)的设计方法,以获得具有保证的指数稳定性的开关Luenberger观测器。结果表明,通过在观察者设计中包括切换,估计误差减少了一半。要充分利用铅酸电池还需要对其功率状态(SOP)和健康状态(SOH)进行实时估计。以便有效地在电池组中的电池之间分配功率和能量。 SOP和SOH分别与电池的电阻和容量成反比和成正比。在这项研究中,最小二乘方法使用来自新的,老化的和失效的Valve调节铅酸电池的实验电压和电流数据来估算二阶传递函数的系数。使用电池的基本模型,系数与电池的欧姆电阻,容量,电荷转移电阻和双层时间常数明确相关。欧姆电阻估计随年龄单调增加,从而提供了SOP估计。容量估计值随年龄单调减少,与老化单元的实际容量损失匹配。最后,电压估计误差可用作SOH / SOP估计器,并量化参数估计的可靠性。长时间休息后的第一个脉冲显示出最高的估计误差。在电池系统中,参数通常随SOC,SOH和工作条件而变化。在许多应用中需要准确而快速的电池参数测量方法。固相扩散率Ds是新的锂离子电池设计中要测量的首批参数之一,因为它主导电化学动力学。在D的测量方法中,恒电流间歇滴定技术(GITT)易于实施,并且被普遍认为是扩散率测量的标准。但是,由于没有直接测量Ds的方法,因此尚未报道GITT的准确性。在这项研究中,我们开发了最小二乘恒电流间歇滴定技术(LS-GITT),该技术使用了GITT测试中的所有电压数据来优化微分在固相扩散模型中的扩散率。 GITT和LS-GITT的精度使用电压预测误差RMS进行评估。根据NCM半电池的实验结果,LS-GITT比GITT更准确,有时精度高出几个数量级。 LS-GITT可提供从15%-100%SOC到1 mV RMS的精确结果,而GITT则可提供小于该范围一半的准确度。两种技术都无法提供低于10%SOC的准确Ds测量值。 (摘要由UMI缩短。)。

著录项

  • 作者

    Shen, Zheng.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.;Chemistry General.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号