首页> 外文学位 >Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications.
【24h】

Molecular precursor derived silicon boron carbonitride/carbon nanotube and silicon oxycarbide/carbon nanotube composite nanowires for energy based applications.

机译:分子前体衍生的碳氮化硅硼/碳纳米管和碳氧化硅/碳纳米管复合纳米线,用于基于能量的应用。

获取原文
获取原文并翻译 | 示例

摘要

Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques.;This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices.;The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 μm 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents one order of magnitude improvement over bare CNTs (1.4 kW/cm-2) coatings and two orders of magnitude over the conventional carbon paint (0.1 kW/cm -2) currently in use.;The second application involved use of SiBCN/CNT and SiOC/CNT composite coatings as energy storage (anode) material in a Li-ion rechargeable battery. Anode coatings (~1mg/cm-2) prepared using SiBCN/CNT synthesized at 1100 °C exhibited high reversible (useable) capacity of 412 mAh/g -1 even after 30 cycles. Further improvement in reversible capacity was obtained for SiOC/CNT coatings with 686 mAh/g-1 at 40 cycles and approximately 99.6% cyclic efficiency. Further, post cycling imaging of dissembled cells indicated good mechanical stability of these anodes and formation of a stable passivating layer necessary for long term cycling of the cell. This improved performance was collectively attributed to the amorphous ceramic shell that offered Li storage sites and the CNT core that provided the required mechanical strength against volume changes associated with repeated Li-cycling.;This novel approach for synthesis of PDC nanocomposites and its application based testing offers a starting point to carry out further research with a variety of PDC chemistries at both fundamental and applied levels.
机译:分子前体衍生的陶瓷(也称为聚合物衍生的陶瓷或PDC)是高温玻璃,已针对涉及高温操作的应用进行了研究。这些陶瓷由液相有机硅前体的受控热降解制备而成,具有出色的工程性能,例如最高1400°C的抗结晶性,高温下的半导体性能以及强烈的光致发光。这些性质是它们的共价键结合的非晶网络和游离(-sp2)碳以及混合的Si / B / C / N / O键的直接结果,否则无法通过常规陶瓷加工技术获得。独特的核/壳型纳米线结构包括碳氮化硼硅(SiBCN)或碳氧化硅(SiOC)作为壳,碳纳米管(CNT)作为核。通过用相应的聚合物前体(例如,用于SiBCN / CNT的自制硼改性的聚脲甲基乙烯基硅氮烷和用于SiOC / CNT的商用聚硅氧烷)对CNT表面进行液相功能化,然后在惰性条件下进行受控热解,使其成为可能。这种独特的体系结构具有几个优点,例如耐高温氧化性(由陶瓷外壳提供),改进的导电性和机械韧性(归因于CNT芯),这使我们能够探索其在能量转换和存储设备中的用途。应用涉及使用SiBCN / CNT复合材料作为激光热量计的高温辐射吸收材料。将铜基板上的SiBCN / CNT喷涂层暴露于高能激光束(在10.6μm2.5 kW CO2激光器中连续波,持续10秒),然后对其异位结构进行了研究。借助于多种技术,我们确定耐热破坏性为15 kW / cm -2,光吸收率超过97%。这表示比裸露的CNT(1.4 kW / cm-2)涂层提高一个数量级,比目前使用的常规碳涂料(0.1 kW / cm -2)提高两个数量级;第二个应用涉及SiBCN / CNT和SiOC / CNT复合涂层作为锂离子可充电电池中的储能(阳极)材料。使用1100°C合成的SiBCN / CNT制备的阳极涂层(〜1mg / cm-2)即使在30个循环后仍具有412 mAh / g -1的高可逆(可用)容量。具有686 mAh / g-1的40次循环和大约99.6%循环效率的SiOC / CNT涂层的可逆容量得到了进一步的提高。此外,分解电池的循环后成像表明这些阳极具有良好的机械稳定性,并且形成了电池长期循环所必需的稳定钝化层。改善的性能归因于非晶态陶瓷壳提供了锂的储存位置,而CNT核则提供了所需的机械强度以应对与重复的锂循环有关的体积变化。;这种新颖的PDC纳米复合材料合成方法及其基于应用的测试为在基础和应用水平上对各种PDC化学进行进一步研究提供了起点。

著录项

  • 作者

    Bhandavat, Romil.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Nanotechnology.;Energy.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号