首页> 外文学位 >Heat transfer in nano/micro multi-component and complex fluids with applications to heat transfer enhancement.
【24h】

Heat transfer in nano/micro multi-component and complex fluids with applications to heat transfer enhancement.

机译:纳米/微米多组分和复杂流体中的传热,并应用于增强传热。

获取原文
获取原文并翻译 | 示例

摘要

Suspension fluids are a class of complex fluids which are extensively used in industrial and biological systems. Examples of such fluids are nano/micro fluids, fiber suspensions in a paper making machine, particle filled thermal interface materials, food products, fluidized beds, chemical products and biological systems. The thermo-physical properties of these fluids are different from the pure fluids. Due to the various applications of such mixtures, it is important to determine the properties of the resultant complex fluid. In this research, thermal properties of complex suspension flows are investigated using numerical computations.;The objective of this research is to develop an efficient and accurate computational method to investigate heat transport in suspension flows. The method presented here is based on solving the lattice Boltzmann equation for the fluid phase, as it is coupled to the Newtonian dynamics equations to model the movement of particles and the energy equation to find the thermal properties. This is a direct numerical simulation that models the free movement of the solid particles suspended in the flow and its effect on the temperature distribution. This is a robust and efficient computational method for the analysis of solid particles suspended in fluid. An advantage of the lattice Boltzmann method is that the code can be easily implemented on parallel processors because of the local nature of the time evolution operator. Here, parallel implementations are done using MPI (message passing interface) method. Teragrid super computing resources have been used for large domain simulations.;In this study, convective heat transfer in internal suspension flow (low solid volume fraction, &phis;10%), heat transfer in hot pressing of fiber suspensions and thermal performance of particle filled thermal interface materials (high solid volume fraction, &phis;>40%) are investigated. The effect of different parameters such as particle size or thermal conductivity on thermal performance is discussed. The results have been compared to previous experimental, analytical or numerical studies. Large domain simulations show that the flow disturbance due to movement of suspended particles is the main reason for local and overall thermal enhancements in convective heat transfer of internal suspension flows. The results show that the heat transfer rate is enhanced about 10% at 5% particle volume fraction.;Hot pressing of wood fiber suspensions is studied numerically. It is shown that effective pre-heating of fiber suspensions can lead to considerable energy savings in paper making process. The results show that the thermal properties are highly dependent on the wood fiber type. The effective thermal conductivity changes about 45% for suspensions of different softwood and hardwoods at 20-40% of solid fiber contents.;Detail study of particle laden thermal interface materials (a dense suspension) in squeeze flow, shows that the microstructure changes in assembly process. This affects the thermal properties and needs to be considered for realistic thermal predictions. The results show that effective thermal conductivity is enhanced 2-7 times at &phis;=55% depending on particle size and conductivity. It is also shown that using ellipsoidal particles with aspect ratio=4 enhances the thermal conductivity 2.5 times compared to a mixture with spherical particles at &phis;=60%.
机译:悬浮液是一类复杂的流体,广泛用于工业和生物系统。这种流体的例子是纳米/微流体,造纸机中的纤维悬浮液,填充颗粒的热界面材料,食品,流化床,化学产品和生物系统。这些流体的热物理性质不同于纯流体。由于这种混合物的各种应用,确定所得复合流体的性质很重要。本研究利用数值计算方法研究了复杂的悬浮液流的热特性。本研究的目的是开发一种有效而准确的计算方法来研究悬浮液流的热传递。此处介绍的方法基于求解流体相的格子Boltzmann方程,因为该方法与牛顿动力学方程耦合以对粒子的运动建模,而能量方程则与热方程相联系。这是直接的数值模拟,它模拟了悬浮在流中的固体颗粒的自由运动及其对温度分布的影响。这是一种用于分析悬浮在流体中的固体颗粒的强大而有效的计算方法。格子Boltzmann方法的优点是,由于时间演化算子的​​局部性质,可以在并行处理器上轻松实现代码。在这里,并行实现是使用MPI(消息传递接口)方法完成的。 Teragrid超级计算资源已用于大范围模拟。在本研究中,内部悬浮液流中的对流传热(低固体体积分数,φ<10%),纤维悬浮液的热压传热和颗粒的热性能研究了填充的热界面材料(高固体体积分数,> 40%)。讨论了不同参数(例如粒度或导热系数)对热性能的影响。将结果与先前的实验,分析或数值研究进行了比较。大域模拟显示,由于悬浮颗粒的运动而引起的流动扰动是内部悬浮流对流传热中局部和整体热增强的主要原因。结果表明,当颗粒体积分数为5%时,传热率提高了10%左右。结果表明,纤维悬浮液的有效预热可以在造纸过程中节省大量能源。结果表明,热性能高度依赖于木纤维类型。在固体纤维含量为20%至40%的情况下,不同软木和硬木的悬浮液的有效热导率变化约为45%。;详细研究含颗粒热界面材料(致密的悬浮液)在挤压流中的行为,表明装配过程中的微观结构发生了变化处理。这会影响热性能,因此需要进行实际的热预测。结果表明,取决于粒径和电导率,有效导热率在φ= 55%时提高了2-7倍。还显示出,与具有= 60%的球形颗粒的混合物相比,使用纵横比= 4的椭圆形颗粒将导热率提高2.5倍。

著录项

  • 作者

    Haji Aghaee Khiabani, Reza.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号