首页> 外文学位 >The Minimum Rank Problem for Outerplanar Graphs.
【24h】

The Minimum Rank Problem for Outerplanar Graphs.

机译:平面图的最小秩问题。

获取原文
获取原文并翻译 | 示例

摘要

Given a simple graph G with vertex set V( G) = {1, 2, ...,n} define S (G) to be the set of all real symmetric matrices A such that for all i ≠ j, the aij ≠ 0 if and only if ij ∈ E(G). The range of the ranks of matrices in S (G) is of interest and can be determined by finding the minimum rank. The minimum rank of a graph, denoted mr( G), is the minimum rank achieved by a matrix in S (G). The maximum nullity of a graph, denoted M(G), is the maximum nullity achieved by a matrix in S (G). Note that mr(G) + M (G) = |V(G)| and so in finding the maximum nullity of a graph, the minimum rank of a graph is also determined. The minimum rank problem for a graph G asks us to determine mr(G) which in general is very difficult. A simple graph is planar if there exists a drawing of G in the plane such that any two line segments representing edges of G intersect only at a point which represents a vertex of G. A planar drawing partitions the rest of the plane into open regions called faces. A graph is outerplanar if there exists a planar drawing of G such that every vertex lies on the outer face. We consider the class of outerplanar graphs and summarize some of the recent results concerning the minimum rank problem for this class.;The path cover number of a graph, denoted P (G), is the minimum number of vertex-disjoint paths needed to cover all the vertices of G. We show that for all outerplanar graphs G, P(G) ≥ M(G). We identify a subclass of outerplanar graphs, called partial 2-paths, for which P( G) = M(G). We give a different characterization for another subset of outerplanar graphs, unicyclic graphs, which determines whether M(G) = P(G) or M(G) = P(G) - 1. We give an example of a 2-connected outerplanar graph for which P(G) > M(G).;A cover of a graph G is a collection of subgraphs G1, ..., Gk of G such that the ∪E(G i) = E(G). The rank-sum of a cover C of G is denoted as rsC and is equal to sum mr(Gi). We show that for an outerplanar graph G, there exists an edge-disjoint cover of G consisting of cliques, stars, cycles, and double cycles such that the rank-sum of the cover is equal to the minimum rank of G. Using the fact that such a cover exists allows us to show that the minimum rank of a weighted outerplanar graph is equal to the minimum rank of its underlying simple graph.
机译:给定一个具有顶点集V(G)= {1,2,...,n}的简单图G,将S(G)定义为所有实对称矩阵A的集合,这样对于所有i≠j,aij≠当且仅当ij∈E(G)时为0。 S(G)中矩阵等级的范围很重要,可以通过找到最小等级来确定。表示为mr(G)的图的最小秩是S(G)中的矩阵所达到的最小秩。表示为M(G)的图的最大无效度是由S(G)中的矩阵实现的最大无效度。注意,mr(G)+ M(G)= | V(G)|因此,在查找图的最大无效度时,还要确定图的最小秩。图G的最小秩问题要求我们确定通常很难的mr(G)。如果在平面中存在G的图形,使得代表G的边缘的任何两条线段仅在代表G顶点的点处相交,则简单图形是平面的。平面图将平面的其余部分划分为称为面孔。如果存在一个G的平面图,则每个顶点都位于外表面上,则图是外平面的。我们考虑了外平面图的类别,并总结了有关该类别的最小秩问题的一些最新结果。;图的路径覆盖数(表示为P(G))是覆盖所需的最小顶点不相交路径的数量G的所有顶点。我们表明,对于所有外平面图G,P(G)≥M(G)。我们确定了外平面图的一个子类,称为子2路径,其中P(G)= M(G)。我们为外平面图的另一个子集单环图给出了不同的特征,它决定了M(G)= P(G)还是M(G)= P(G)-1。我们举了一个2连通外平面的例子P(G)> M(G).;图G的封面是G的子图G1,...,Gk的集合,使得suchE(G i)= E(G)。 G的封面C的秩和表示为rsC,等于和mr(Gi)。我们表明,对于外平面图G,存在由边线,星,周期和双周期组成的G的边不相交覆盖,使得覆盖的秩和等于G的最小秩。这种覆盖的存在使我们能够证明加权外平面图的最小秩等于其基础简单图的最小秩。

著录项

  • 作者

    Sinkovic, John H., III.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Mathematics.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 72 p.
  • 总页数 72
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号