首页> 外文学位 >On the Design, Analysis, and Implementation of Algorithms for Selected Problems in Graphs and Networks.
【24h】

On the Design, Analysis, and Implementation of Algorithms for Selected Problems in Graphs and Networks.

机译:关于图和网络中选定问题的算法的设计,分析和实现。

获取原文
获取原文并翻译 | 示例

摘要

This thesis studies three problems in network optimization, viz., the minimum spanning tree verification (MSTV) problem, the undirected negative cost cycle detection (UNCCD) problem, and the negative cost girth (NCG) problem. These problems find applications in several domains including program verification, proof theory, real-time scheduling, social networking, and operations research.;The MSTV problem is defined as follows: Given an undirected graph G = (V,E) and a spanning tree T, is T a minimum spanning tree of G? We focus on the case where the number of distinct edge weights is bounded. Using a bucketed data structure to organize the edge weights, we present an efficient algorithm for the MSTV problem, which runs in O (| E| + |V| · K) time, where K is the number of distinct edge weights. When K is a fixed constant, this algorithm runs in linear time. We also profile our MSTV algorithm with the current fastest known MSTV implementation. Our results demonstrate the superiority of our algorithm when K ≤ 24.;The UNCCD problem is defined as follows: Given an undirected graph G = (V,E) with arbitrarily weighted edges, does G contain a negative cost cycle? We discuss two polynomial time algorithms for solving the UNCCD problem: the b-matching approach and the T-join approach. We obtain new results for the case where the edge costs are integers in the range {--K ·· K}, where K is a positive constant. We also provide the first extensive empirical study that profiles the discussed UNCCD algorithms for various graph types, sizes, and experiments.;The NCG problem is defined as follows: Given a directed graph G = (V,E) with arbitrarily weighted edges, find the length, or number of edges, of the negative cost cycle having the least number of edges. We discuss three strongly polynomial NCG algorithms. The first NCG algorithm is known as the matrix multiplication approach in the literature. We present two new NCG algorithms that are asymptotically and empirically superior to the matrix multiplication approach for sparse graphs. We also provide a parallel implementation of the matrix multiplication approach that runs in polylogarithmic parallel time using a polynomial number of processors. We include an implementation profile to demonstrate the efficiency of the parallel implementation as we increase the graph size and number of processors. We also present an NCG algorithm for planar graphs that is asymptotically faster than the fastest topology-oblivious algorithm when restricted to planar graphs.
机译:本文研究了网络优化中的三个问题,即最小生成树验证(MSTV)问题,无向负成本周期检测(UNCCD)问题和负成本周长(NCG)问题。这些问题在程序验证,证明理论,实时调度,社交网络和运筹学等多个领域中都有应用。MSTV问题定义如下:给定无向图G =(V,E)和生成树T,T是G的最小生成树吗?我们关注不同边缘权重的数量有界的情况。使用桶式数据结构来组织边缘权重,我们提出了一种解决MSTV问题的有效算法,该算法以O(| E | + | V |·K)时间运行,其中K是不同边缘权重的数量。当K为固定常数时,该算法以线性时间运行。我们还将以当前最快的已知MSTV实现来描述我们的MSTV算法。我们的结果证明了当K≤24时我们算法的优越性。UNCCD问题定义如下:给定无向图G =(V,E)具有任意加权的边,G是否包含负成本周期?我们讨论了两种解决UNCCD问题的多项式时间算法:b匹配法和T联合法。对于边成本为{--K··K}范围内的整数的情况,我们获得新的结果,其中K为正常数。我们还提供了第一个广泛的实证研究,针对各种图形类型,大小和实验对所讨论的UNCCD算法进行了概述; NCG问题定义如下:给定有向图G =(V,E)具有任意加权的边,找到具有最小边数的负成本周期的长度或边数。我们讨论了三种强多项式NCG算法。第一种NCG算法在文献中被称为矩阵乘法法。我们提出了两种新的NCG算法,它们在渐近和经验上都优于稀疏图的矩阵乘法。我们还提供了矩阵乘法方法的并行实现,该方法使用多项式处理器在多对数并行时间内运行。我们提供了一个实现配置文件,以演示随着图形尺寸和处理器数量的增加,并行实现的效率。我们还提出了一种用于平面图的NCG算法,该算法渐渐地比限于平面图时最快的拓扑忽略算法更快。

著录项

  • 作者

    Williamson, Matthew D.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Computer Science.;Operations Research.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号