首页> 外文学位 >Hillslope erosion and weathering rates in Earth's most rapidly uplifting mountains.
【24h】

Hillslope erosion and weathering rates in Earth's most rapidly uplifting mountains.

机译:地球上最迅速隆升的山坡的侵蚀和风化率。

获取原文
获取原文并翻译 | 示例

摘要

Knowledge of hillslope erosion rates and processes is necessary for understanding landscape response to tectonic and climatic forcing and for determining the degree to which mountains regulate biogeochemical cycles and global climate. Landslide erosion and soil production are the principle denudation processes in high-relief terrain, but quantitative estimates of landslide erosion on spatial and temporal scales relevant to landscape evolution are lacking, and there have been no prior measurements of soil production and weathering rates in Earth's most tectonically-active landscapes. Here, I address both of these problems, first by attempting to overcome the inherent difficulty in quantifying landslide erosion rates using a compilation of geometry measurements from 4,231 landslides. I use the geometry to develop scaling relationships that can be used to predict landslide volume from more readily available landslide area information. A key finding is that landslide scaling is controlled by hillslope material; soil landslides have lower depths and hence lower power-law volume-area scaling exponents than bedrock landslides, which has significant implications for accurately quantifying landslide erosion rates. By applying the landslide volume-area scaling relationship to over 15,000 landslides in the Tsangpo Gorge region of the eastern Himalaya, I demonstrate that landslide erosion rates are spatially coupled with stream power and long-term exhumation rates, but become decoupled from hillslope gradients when hillslope angles exceed 30°. These results indicate landslide erosion is coupled with bedrock river incision and rock uplift, but not topography, hence providing the first direct confirmation of a 'threshold hillslope' model of landscape evolution that has emerged over the last two decades. I address the role soils play in the denudation of rapidly uplifting mountains by developing soil production rate and catchment scale denudation data for the western Southern Alps of New Zealand. Soil production rates in the western Southern Alps can exceed those measured elsewhere by more than an order of magnitude and soil physical erosion rates are linearly coupled with chemical weathering rates. Using the relationship between physical and chemical denudation rates to model global weathering fluxes as a function of mean local slope, I demonstrate that the small, mountainous fraction of Earth's surface dominates the global chemical weathering flux. The weathering measurements and model results hence overturn the view that there are 'speed-limits' to soil production and that erosion and weathering are decoupled in mountains, and instead strongly support the hypothesis that mountain uplift influences global climate over geological timescales via links among topography, erosion, weathering, and CO2 cycling.
机译:了解山坡侵蚀速率和过程对于了解景观对构造和气候强迫的反应以及确定山脉调节生物地球化学循环和全球气候的程度是必要的。滑坡侵蚀和土壤生产是高起伏地形的主要剥蚀过程,但是缺乏与景观演化相关的时空尺度上滑坡侵蚀的定量估计,而且在地球上最干旱的地区还没有事先测量过的土壤产量和风化率构造活跃的景观。在这里,我解决了这两个问题,首先,通过使用来自4,231个滑坡的几何测量结果的汇编,试图克服量化滑坡侵蚀率的固有困难。我使用几何来建立比例关系,可以根据更容易获得的滑坡面积信息来预测滑坡量。一个关键的发现是滑坡的尺度是由山坡材料控制的。与基岩滑坡相比,土壤滑坡的深度较小,因此幂律体积面积比例指数较低,这对准确量化滑坡侵蚀率具有重要意义。通过对喜马拉雅东部东部苍坡峡谷地区的15,000多个滑坡应用滑坡体量与面积的比例关系,我证明了滑坡的侵蚀率在空间上与水流动力和长期掘出速率相关,但在山坡时与坡度梯度分离角度超过30°。这些结果表明,滑坡侵蚀与基岩河流切割和岩石隆起有关,但与地形无关,因此首次直接证实了过去二十年来出现的“阈山坡”景观演变模型。通过开发新西兰南部阿尔卑斯山西部地区的土壤生产率和集水规模剥蚀数据,我探讨了土壤在快速抬升山体剥蚀中的作用。南阿尔卑斯山西部地区的土壤生产率可能比其他地方的生产率高出一个数量级,并且土壤物理侵蚀率与化学风化率呈线性关系。使用物理和化学剥蚀速率之间的关系来模拟作为平均局部坡度的函数的全球风化通量,我证明了地球表面的小山区占主导地位的全球化学风化通量。因此,风化测量和模型结果推翻了这样的观点,即土壤生产存在“限速”,而山区的侵蚀和风化是分开的,而是强烈支持以下假设:山区隆起通过地形之间的联系影响地质时标上的全球气候,侵蚀,风化和二氧化碳循环。

著录项

  • 作者

    Larsen, Isaac James.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Geomorphology.;Geology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号