首页> 外文学位 >Durability and performance optimization of cathode materials for fuel cells.
【24h】

Durability and performance optimization of cathode materials for fuel cells.

机译:燃料电池正极材料的耐用性和性能优化。

获取原文
获取原文并翻译 | 示例

摘要

The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion.; The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316.; PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.
机译:本文的主要目的是开发用于评估燃料电池正极材料的加速耐久性试验(ADT)。工作分为两大类,一类是高温燃料电池,重点是熔融碳酸盐燃料电池(MCFC)阴极集电器腐蚀问题,二类是低温燃料电池,特别是聚合物电解质燃料电池(PEMFC)阴极催化剂腐蚀。 MCFC的高工作温度使其比其他燃料电池更具优势。这些包括更高的效率(> 50%),更快的电极动力学等。在650°C时,可以建立理论上的开路电压,从而在不需要任何贵金属催化剂的情况下提供较低的电极过电势,并具有很高的电化学效率。废热在足够高的温度下产生,使其可用作副产物。但是,为了使MCFC商业化,必须达到40,000小时的使用寿命。 MCFC中的主要限制因素是阴极材料的腐蚀,其中包括阴极电极和阴极集电器。在本论文的第一部分中,使用ADT研究了裸露的,热处理过的和涂覆钴的钛合金的腐蚀特性,并将其与最新的集电器材料SS 316进行了比较。 PEMFC具有高功率密度和相对较低的工作温度,因此是各种便携式,固定式和汽车应用的最佳选择。然而,由于在阴极催化剂中使用了大量的铂电催化剂,因此燃料电池技术的商业化的主要障碍是所涉及的成本。为了增加功率并降低聚合物电解质燃料电池(PEMFC)系统中的阴极成本,开发了Pt合金催化剂以提高其活性和稳定性。在新合金的开发和理解ORR机理方面已经进行了广泛的研究。然而,相对少量的出版物涉及PMFC合金在PEMFC环境中的耐久性。在本论文的第二部分中,开发了一种ADT用于以时间和成本有效的方式评估PEMFC阴极催化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号