首页> 外文学位 >Development of a new strategy for the enantiospecific synthesis of aspidosperma alkaloids: Total synthesis of aspidospermidine and aspidophytine.
【24h】

Development of a new strategy for the enantiospecific synthesis of aspidosperma alkaloids: Total synthesis of aspidospermidine and aspidophytine.

机译:开发一种新的策略,对映体合成蛇麻子碱生物碱:蛇麻素和蛇眼碱的全合成。

获取原文
获取原文并翻译 | 示例

摘要

A large number of aspidosperma alkaloids display interesting and important biological properties. For this reason, over the last three decades, different synthetic approaches have been developed for the total syntheses of this family of compounds. More recently, a number of quite efficient asymmetric syntheses also appeared in the literature. The formation of one of the two chiral quaternary centers was the key step for those asymmetric syntheses. As part of our ongoing efforts to further exploit the ketene-lactonization reaction, a powerful tool for setting up the chiral quaternary carbon centers, a novel sequence of reactions was planned for the enantiospecific synthesis of aspidosperma alkaloids.; Aspidospermidine was chosen as the first target to demonstrate the concept. Evans' chiral N-sulfinyloxazolidinone was used for the first time in place of (-)-menthyl 4-methylphenyl sulfinate to prepare {lcub}4-( SS)-[(4-methylphenyl) sulfinyl] but-3-yn-1-y1{rcub}-2-propyl-1,3-dioxolane in a much higher yield. A stereo-defined trisubstituted alkenyl chiral sulfoxide was then formed from a Michael addition of an (ortho-Boc amino) aryl organocuprate to the chiral alkynyl sulfoxide. The ketene lactonization of the chiral alkenyl sulfoxide with a dichloroketene delivered a high yield of lactone with a newly formed chiral quaternary carbon center. The enantiospecificity of this transformation was not determined until the lactone was converted to a more advanced intermediate (chloropropyl amide) through the transformations of lactone opening, intramolecular aldol condensation and amide formation. A chiral HPLC analysis was carried out on this amide and there was essentially only one enantiomer in the sample of amide. The result proved that the ketene lactonization reaction was a highly enantiospecific process. A tandem Michael addition-alkylation reaction furnished a tetracyclic system. A modified Saegusa reaction dramatically improved the yield of the enone formation reaction over the previous adopted alpha-sulfoxide elimination protocol. An intramolecular Michael addition of the deprotected aniline to the enone constructed the last indoline ring. Finally, reductions of the ketone (a Wolff-Kishner reduction) and the lactam completed the total synthesis of (+)-Aspidospermidine.; More complex aspidosperma alkaloids, aspidophytine and haplophytine, were then selected as the synthetic targets to assess the successfully developed synthetic strategy. A substituted aniline (2, 3-dimethoxyaniline) and a functionalized alkynyl sulfoxide were the starting materials for the synthesis of aspidophytine. The ketene lactonization was successfully carried out on the more complex alkenyl sulfoxide and the chiral HPLC analysis on the subsequently formed amide again showed only one enantiomer. The amide underwent a tandem Michael addition-alkylation to form an advanced tricyclic intermediate. Deprotection/formylation of the aniline with concomitant Michael addition to the enone formed the indoline scaffold of aspidophytine with all four chiral centers set. Enolization of the ketone to form its enol triflate ester, followed by a Stille reduction afforded the C3--C4 alkene. Conditions of PDC/DMF were then used to oxidize the debenzylated C-5 side chain primary alcohol to a carboxylic acid after some routine protocols failed. The selective reduction of the amide bonds in the presence of the carboxylic acid was carried out using the Meerwein's salts along with NaBH4 in ethanol. Aspidophytine was finally obtained after the oxidation of the tertiary amine to its iminium salt followed by the treatment with sodium bicarbonate to close the lactone ring. A few synthetic pathways were proposed for the construction of haplophytine from aspidophytine.
机译:大量的aspasposperma生物碱显示出有趣而重要的生物学特性。因此,在过去的三十年中,已经开发了用于该化合物家族的总合成的不同合成方法。最近,文献中还出现了许多相当有效的不对称合成。两个手性四元中心之一的形成是这些不对称合成的关键步骤。作为我们为进一步利用烯酮-内酯化反应(建立手性季碳中心的有力工具)而进行的不断努力的一部分,计划了一种新的反应序列,用于对虾精子生物碱的对映体特异性合成。选择曲霉亚精胺作为证明该概念的第一个靶标。第一次使用Evans的手性N-亚磺酰基恶唑烷酮代替(-)-薄荷基4-甲基苯基亚磺酸酯,制备{lcub} 4-(SS)-[(4-甲基苯基)亚磺酰基] but-3-yn-1 -y1 {rcub} -2-丙基-1,3-二氧戊环的产率要高得多。然后通过将(邻-Boc氨基)芳基有机铜的迈克尔加成到手性炔基亚砜上形成立体定义的三取代的烯基手性亚砜。手性链烯基亚砜与二氯乙烯酮的烯酮内酯化反应可产生具有新形成的手性季碳中心的内酯高收率。直到通过内酯开放,分子内醇醛缩合和酰胺形成的转化将内酯转化为更高级的中间体(氯丙基酰胺),才确定该转化的对映体特异性。对该酰胺进行了手性HPLC分析,酰胺样品中基本上仅存在一种对映体。结果证明,烯酮内酯化反应是高度对映体特异性的过程。串联迈克尔加成-烷基化反应提供了四环体系。与以前采用的α-亚砜消除方案相比,改良的Saegusa反应极大地提高了烯酮形成反应的产率。将脱保护的苯胺分子内的迈克尔加成到烯酮上构成最后的二氢吲哚环。最后,酮的还原(Wolff-Kishner还原)和内酰胺的还原完成了(+)-Asspidospermidine的全部合成。然后,选择更复杂的天冬子碱生物碱,天冬氨酸和单倍体作为合成靶标,以评估成功开发的合成策略。取代的苯胺(2,3-二甲氧基苯胺)和官能化的炔基亚砜是合成蛇药的原料。在更复杂的烯基亚砜上成功进行了烯酮内酯化,并且对随后形成的酰胺的手性HPLC分析再次显示仅一种对映异构体。酰胺进行串联的迈克尔加成烷基化反应以形成高级的三环中间体。苯胺的脱保护/甲酰化反应以及伴随迈克尔向烯酮的加成反应,形成了带有所有四个手性中心的蛇形丝晶的吲哚骨架。酮的烯醇化形成其烯醇三氟甲酸酯,然后进行Stille还原,得到C3--C4烯烃。然后,在某些常规方案失败后,使用PDC / DMF的条件将脱苄基的C-5侧链伯醇氧化为羧酸。使用Meerwein盐和NaBH4在乙醇中进行羧酸存在下的酰胺键选择性还原。在叔胺氧化成亚胺盐后,最后得到碳酸镁,然后用碳酸氢钠处理以封闭内酯环。提出了一些合成途径,用于从天蚕碱构建单倍体。

著录项

  • 作者

    Cao, Ganfeng.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号