首页> 外文学位 >Design techniques for power efficiency and robustness in scaled high-performance systems.
【24h】

Design techniques for power efficiency and robustness in scaled high-performance systems.

机译:规模化高性能系统中的电源效率和鲁棒性的设计技术。

获取原文
获取原文并翻译 | 示例

摘要

Technology scaling leads to smaller transistor feature dimensions, higher circuit integration density, and faster clock frequency. However, these benefits are achieved at the expense of increased power dissipation and power density. High power dissipation and power density raise temperature, degrade system reliability, and increase the cost of heat removal.; In this work, we address the following power-related problems in modern high-performance VLSI systems: (1) The current induced noise, such as IR drop and Ldi/dt noise in power supply network, has become a crucial issue in present-day VLSI circuit design. It may slow down the circuit speed and reduce the noise margin. An integrated architectural/physical design level technique is proposed to optimize the current demand distribution with consideration of floorplan. As a result, the current surge in power supply network and the corresponding current induced noise are minimized. (2) On-chip decoupling capacitor (Decap) has been extensively deployed to minimize the power supply noise. However, leakage power and area overheads incurred by Decap can be significant. A novel Decap design named Gated Decap is proposed to dynamically control leakage power of Decap, with negligible system throughput penalty. (3) Traditionally, a large current spike is generated when a low-power system, such as a microprocessor with dynamic supply scaling, switches back and forth between the active and power saving modes. A novel Carry-Select Adder (CSA) structure, Cascaded CSA (C2SA) is proposed for low power. Such a design does not incur large current spikes when C 2SA switches between different modes. C2SA works with variable latencies (1 or 2 cycles) automatically, thereby enabling more aggressive and robust supply voltage scaling (under the same timing constraint), and thus resulting in significant power saving.
机译:技术的扩展导致晶体管特征尺寸减小,电路集成密度更高和时钟频率更快。但是,以增加功耗和功率密度为代价实现了这些好处。高功耗和功率密度会升高温度,降低系统可靠性,并增加散热成本。在这项工作中,我们解决了现代高性能VLSI系统中与电源相关的以下问题:(1)当前,电源网络中的感应噪声(例如IR下降和Ldi / dt噪声)已成为当前的关键问题-一天的VLSI电路设计。这可能会减慢电路速度并降低噪声容限。提出了一种集成的建筑/物理设计级别技术,以考虑平面图来优化当前需求分配。结果,最小化了供电网络中的电流浪涌和相应的电流感应噪声。 (2)广泛使用了片上去耦电容器(Decap),以最大程度地降低电源噪声。但是,Decap引起的泄漏功率和面积开销可能很大。提出了一种名为Gated Decap的新型Decap设计,该设计可动态控制Decap的泄漏功率,而系统吞吐量损失可忽略不计。 (3)传统上,当低功率系统(例如具有动态电源缩放功能的微处理器)在活动模式和省电模式之间来回切换时,会产生大电流尖峰。提出了一种新颖的进位选择加法器(CSA)结构,即级联CSA(C2SA),以实现低功耗。当C 2SA在不同模式之间切换时,这种设计不会引起大电流尖峰。 C2SA自动以可变延迟(1或2个周期)工作,从而能够在相同的时序约束下实现更积极,更稳定的电源电压缩放,从而显着节省了功率。

著录项

  • 作者

    Chen, Yiran.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号