首页> 外文学位 >Design of an FPGA-based computing platform for real-time three-dimensional medical imaging.
【24h】

Design of an FPGA-based computing platform for real-time three-dimensional medical imaging.

机译:基于FPGA的实时三维医学成像计算平台的设计。

获取原文
获取原文并翻译 | 示例

摘要

Real-time 3D medical imaging requires very high computational capability that is beyond most of the general computing platforms. Although application specific integrated circuits (ASIC) can provide solutions for a particular algorithm, they are too expensive to develop and most of them are not flexible enough to adapt to the evolution of existing algorithms or the emergence of new problems. FPGA-based reconfigurable architectures combined with general-purpose processors exhibit a good tradeoff in performance and flexibility, and are affordable for practical applications. To address the problems in designing such a system, including long designing and testing time, complex data manipulation and high performance requirement etc., we designed a new computing platform to accelerate a broad range of local operation-based 3D medical imaging algorithms. This platform is composed of a new data caching scheme, called brick caching scheme and a reconfigurable System-on-Chip (SoC) architecture targeted to Xilinx Virtex-II Pro FPGAs. The brick caching scheme exploits spatial locality of reference in three dimensions with 3D block caching; it enables data prefetching by obtaining input data block information through input-output space mapping; it also supports multiple data accesses with data duplication. An intelligent data caching system is built around a PowerPC processor core in the SoC architecture to support the brick caching scheme. A multiple pipeline execution unit that is reconfigurable to different algorithms is designed to perform vectorized computation. Two algorithms are implemented and tested on this platform, one is the FDK cone-beam CT reconstruction algorithm and the other is the mutual information-based 3D registration algorithm. Our simulation results demonstrate that a speed-up of about 30 can be achieved for both of the algorithms.
机译:实时3D医学成像需要非常高的计算能力,这超出了大多数通用计算平台。尽管专用集成电路(ASIC)可以为特定算法提供解决方案,但它们的开发成本太高,而且大多数都不够灵活,无法适应现有算法的发展或新问题的出现。基于FPGA的可重配置架构与通用处理器相结合,在性能和灵活性上取得了很好的折衷,并且在实际应用中负担得起。为了解决设计此类系统的问题,包括设计和测试时间长,数据处理复杂,性能要求高等,我们设计了一个新的计算平台,以加速基于本地操作的3D医学成像算法的广泛应用。该平台由一个新的数据缓存方案(称为砖块缓存方案)和一个针对Xilinx Virtex-II Pro FPGA的可重配置片上系统(SoC)架构组成。块缓存方案利用3D块缓存在三个维度上利用了参考的空间局部性。通过输入输出空间映射获取输入数据块信息,可以进行数据预取。它还支持具有数据复制功能的多个数据访问。智能数据缓存系统围绕SoC架构中的PowerPC处理器内核构建,以支持模块缓存方案。可重新配置为不同算法的多管道执行单元被设计为执行矢量化计算。在此平台上实现并测试了两种算法,一种是FDK锥束CT重建算法,另一种是基于互信息的3D配准算法。我们的仿真结果表明,两种算法均可实现约30倍的加速。

著录项

  • 作者

    Li, Jianchun.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号