首页> 外文学位 >Molecular-beam mass spectrometry of ethylene and cyclohexane flames.
【24h】

Molecular-beam mass spectrometry of ethylene and cyclohexane flames.

机译:乙烯和环己烷火焰的分子束质谱。

获取原文
获取原文并翻译 | 示例

摘要

Molecular-beam mass spectrometry (MBMS) is a technique that is used to measure stable and radical species within flames, and thus it is a strong tool for understanding the formation and destruction pathways of precursors to PAH and soot. Using MBMS and modeling techniques, three well-chosen premixed flat flames have been characterized.;Fuel-lean ethylene flames with and without added allene were mapped to help elucidate the C3H3 self-combination route to benzene formation, and a cyclohexane flame was characterized due to the abundance of cyclohexane within real fuels such as gasoline. Benzene is the precursor to PAH and soot whose formation is the rate-limiting step, and thus knowledge of its formation route is paramount.;The flames characterized include an undoped fuel-lean (&phis; = 0.70), C2H4/O2/56.4% Ar flame (30.00+/-0.01 Torr and ub-300 = 30.6 cm/s), an allene-doped fuel-lean (&phis; = 0.69), 0.19 % C3H4/C2H 4/O2/56.54 % Ar flame (30.00+/-0.01 Torr and ub-300 = 30.6 cm/s), and a stoichiometric (&phis; = 1.00) cyclohexane/O2/32.5% Ar flame (30.00+/-0.01 Torr and ub-300 = 35.0 cm/s). Mole fraction profiles of 31, 35, and 70 stable and radical species were measured within the three flames, respectively. They are modeled with overall good agreement between the model and data.;Comparison of both fuel-lean ethylene flames shows that benzene was detected in the allene-doped flame but not in the undoped ethylene flame, strongly suggesting the importance of C3 routes to benzene. Reaction path analysis showed that benzene in the allene-doped flame is mainly formed through propargyl self-combination as described by the kinetics of Miller and Klippenstein (2003). Examination of the cyclohexane flame showed high concentrations of benzene. A reaction path analysis showed that benzene is mainly formed instead by the dehydrogenation of cyclohexane.;Experiments done at the Advanced Light Source of Lawrence Berkeley National Laboratory show that the isomeric C6H6 composition in the allene-doped flame consisted of 20% fulvene, 45% benzene and 35% 1,5-hexadiyne, while the cyclohexane flame consisted of 99.5% benzene and 0.5% fulvene. This difference in isomeric composition strongly points to the difference in benzene formation pathways in the two fuels.
机译:分子束质谱(MBMS)是一种用于测量火焰中稳定和自由基的技术,因此,它是了解PAH和烟灰前体形成和破坏途径的强大工具。使用MBMS和建模技术,已表征了三种精心选择的预混合平焰。;绘制了添加和不添加丙二烯的贫油乙烯火焰,以帮助阐明C3H3自结合途径形成苯的特性,并表征了环己烷火焰真实的燃料(例如汽油)中存在大量的环己烷。苯是多环芳烃和烟灰的前体,其形成是限速步骤,因此对它的形成途径的了解至关重要。该火焰的特征包括未掺杂的贫燃料(φ= 0.70),C2H4 / O2 / 56.4% Ar火焰(30.00 +/- 0.01 Torr和ub-300 = 30.6 cm / s),掺杂异戊烯的贫燃料(φ= 0.69),0.19%C3H4 / C2H 4 / O2 / 56.54%Ar火焰(30.00+ /-0.01托和ub-300 = 30.6 cm / s,化学计量(φ= 1.00)环己烷/O2/32.5% Ar火焰(30.00 +/- 0.01托和ub-300 = 35.0 cm / s)。在三个火焰中分别测量了31、35和70种稳定和自由基物种的摩尔分数分布。它们的建模与模型之间的总体吻合良好;两种贫燃料的乙烯火焰的比较表明,在掺有丙二烯的火焰中发现了苯,但在未掺杂的乙烯火焰中未检测到苯,这强烈表明了C3路线对苯的重要性。反应路径分析表明,如Miller和Klippenstein(2003)的动力学所描述的那样,掺丙二烯的火焰中的苯主要是通过炔丙基自结合形成的。对环己烷火焰的检查显示出高浓度的苯。反应路径分析表明,苯主要是由环己烷的脱氢反应形成的;劳伦斯伯克利国家实验室高级光源的实验表明,丙二烯掺杂的火焰中的C6H6异构体组成为20%富烯,45%苯和35%的1,5-己二炔,而环己烷火焰由99.5%的苯和0.5%的富勒烯组成。异构体组成的这种差异强烈表明了两种燃料中苯形成途径的差异。

著录项

  • 作者

    Law, Matthew E.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Chemical.;Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 667 p.
  • 总页数 667
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号