首页> 外文学位 >Capable Copper Electrodeposition Process for Integrated Circuit - substrate Packaging Manufacturing
【24h】

Capable Copper Electrodeposition Process for Integrated Circuit - substrate Packaging Manufacturing

机译:集成电路-基板封装制造中可使用的铜电沉积工艺

获取原文
获取原文并翻译 | 示例

摘要

This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20microm to 100microm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20microm - 200microm, fine traces with varying widths of 3microm - 30microm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show "smart" control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.
机译:这项工作演示了一种有力的反向脉冲沉积方法,可影响微孔内部的间隙填充行为,以及在细线图案化区域中的均匀沉积,以用于基板包装应用。 IC基板封装中的互连电路包括深度从20微米到100微米不等的纵横比为0.5到1.5的堆叠微孔,以及由光刻定义的细线图案。光刻定义的图案区域包含多种特征尺寸,包括直径为20微米至200微米的大型圆形焊盘结构,宽度为3微米至30微米的细迹线以及其他平面区域,用于定义IC基板封装。进行铜的电沉积以建立所需的电路。在IC基板应用中对铜进行电沉积面临某些独特的挑战,因为它们需要低成本的制造工艺,该工艺要求在微孔内填充无空隙的间隙,并在裸露的图案化区域上均匀沉积铜。建立这种包装所需的金属厚度的沉积时间范围可以从几分钟到几小时不等。这项工作展示了一种反向脉冲电沉积方法,该方法可在微孔内实现无空隙的间隙填充,并在FLS(细线和间隙)区域中实现均匀电镀,沉积速率明显高于传统方法。为了实现此功能,进行了系统的实验和仿真研究。显示了控制电沉积过程的独立参数(例如浴温,反向脉冲电镀参数和电解质浓度的比率)与微孔内精细图案化区域中的沉积动力学和沉积均匀性以及间隙填充率之间的强相关性。此外,通过二次和三次电流仿真工作,可以了解通孔填充过程的物理原理。这种努力导致对通孔顶部和底部的沉积速率进行“智能”控制,以避免形成空隙。最后,还显示出对晶粒尺寸和随之而来的大块铜的铜冶金特性的参数影响,可以实现用于IC封装行业的高可靠性基板封装。

著录项

  • 作者

    Ganesan, Kousik.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Materials science.;Chemical engineering.;Chemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 320 p.
  • 总页数 320
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号