首页> 外文学位 >Fourier-bessel analysis of photonic crystals and photonic quasicrystals.
【24h】

Fourier-bessel analysis of photonic crystals and photonic quasicrystals.

机译:光子晶体和光子准晶体的傅里叶-贝塞尔分析。

获取原文
获取原文并翻译 | 示例

摘要

Photonic crystals are periodic mixed dielectric media with dispersion characteristics that include optical band gaps and light localization. Photonic quasicrystals are the rotational equivalent of photonic crystals, structures that have rotational symmetry instead of translational. There are a number of numerical methods available for the determination of the optical characteristics of both classes of structure. The two most commonly used techniques are planewave expansion and finite-difference time-domain. The efficient planewave expansion method is a modal approach that requires translational symmetry within the structure being studied. The alterations required to implement it for photonic crystals with non-periodic lattice defects or photonic quasicrystals can result in significant increases in the computational requirements. The finite-difference time-domain technique is robust, placing no requirements on the symmetry of the dielectric. However, the technique can be computationally intensive and as a time based method it is optimized for modeling field propagation through the structure and not the modal solutions.;The theoretical derivation of the method, and simulation results for both a photonic crystal and two photonic quasicrystals will be presented. Finite-difference time-domain and planewave expansion results will be used as the baseline against which the efficiency and accuracy of the new method is evaluated.;This thesis proposes a new method, the Fourier-Bessel expansion method, for the determination of the wavelengths for stationary states supported by rotationally symmetric dielectric structures. The approach is a polar coordinate equivalent of the planewave expansion method where the basis of expansion is the Fourier-Bessel function. The relationship between the rotational symmetries of the states and dielectric can be used to reduce the computational requirements relative to planewave expansion while retaining its accuracy.
机译:光子晶体是具有分散特性(包括光学带隙和光局部化)的周期性混合介电介质。光子准晶体是光子晶体的旋转等效物,光子晶体具有旋转对称性而不是平移结构。有许多数值方法可用于确定这两类结构的光学特性。两种最常用的技术是平面波扩展和时域有限差分。有效的平面波扩展方法是一种模态方法,需要在所研究的结构内实现平移对称。对具有非周期性晶格缺陷的光子晶体或光子准晶体实施该方法所需的更改可能会导致计算需求显着增加。时域有限差分技术非常可靠,对电介质的对称性没有任何要求。但是,该技术可能需要大量计算,并且作为基于时间的方法,因此它最适合用于建模通过结构而不是模态解的场传播。;该方法的理论推导以及两个光子晶体和两个光子准晶体的仿真结果将被介绍。时域有限差分和平面波扩展结果将作为评估新方法的效率和准确性的基准。本论文提出了一种新的方法,即傅立叶-贝塞尔扩展方法,用于确定波长对于由旋转对称介电结构支撑的稳态。该方法是等效于平面波扩展方法的极坐标,其中扩展的基础是傅里叶-贝塞尔函数。状态的旋转对称性与电介质之间的关系可以用来减少相对于平面波扩展的计算要求,同时保持其精度。

著录项

  • 作者

    Newman, Scott R.;

  • 作者单位

    Carleton University (Canada).;

  • 授予单位 Carleton University (Canada).;
  • 学科 Physics Optics.;Physics Electricity and Magnetism.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号