首页> 外文学位 >The effects of small-scale heterogeneity on the large-scale dynamics of west Siberian wetland carbon fluxes.
【24h】

The effects of small-scale heterogeneity on the large-scale dynamics of west Siberian wetland carbon fluxes.

机译:小规模异质性对西西伯利亚湿地碳通量大尺度动力学的影响。

获取原文
获取原文并翻译 | 示例

摘要

Wetlands are the world's largest natural source of methane and an historically large sink of atmospheric carbon. High-latitude wetlands have received increasing scrutiny recently, due to the temperature sensitivity of their carbon emissions, and the implications of ongoing and predicted warming - including implications of permafrost thawing. The centerpiece of this dissertation is a new large-scale wetland modeling scheme that accounts for the heterogeneous effects of microtopography on water table depth and carbon fluxes. I incorporated this new scheme into the Variable Infiltration Capacity (VIC) land surface model, extended it to include carbon cycle processes, and linked it to an existing wetland methane emissions model. Using this modeling framework, I simulated wetland hydrology and biogeochemistry in the West Siberian Lowland (WSL) over the period 1948-2010. Changes in temperature and precipitation influenced both water table depth and methane emissions. I found that simpler schemes used in previous studies were subject to errors of +/- 30% in their predictions of end-of-century boreal wetland methane emissions due to the nature of their simplifying assumptions. While calibrating to intensive methane flux observations in the WSL, I found a strong north-south gradient in observed methane emissions, which could only be reproduced a) accounting for sub-grid heterogeneity in water table depth and b) using spatially-varying methane emissions parameters. Because most previous studies neglected at least one of these two controls, the majority of methane emissions from the WSL have, apparently incorrectly, been attributed to permafrost wetlands in the northern half of the domain. Finally, I used the outputs of the CMIP5 global climate model projections to force simulations over the WSL for the 21st century and explored the possible responses of the soil microbial communities to climate change. End-of-century methane emissions from the WSL ranged from 6 to 120% more than historical levels, with the range primarily determined by the nature of the response of soil microbes to climate change. Crucially, under one potential scenario, the majority of methane emissions will shift from the south of the WSL to the north, where permafrost thaw is a concern. These results suggest a need to both a) account for sub-grid heterogeneity in wetland soil moisture conditions and b) constrain the response of soil microbial communities to future changes in climate and vegetation.
机译:湿地是世界上最大的甲烷自然资源,也是历史上较大的大气碳汇。由于高纬度湿地碳排放的温度敏感性以及持续的和预计的变暖的影响(包括多年冻土融化的影响),近来受到越来越多的审查。本文的重点是一种新的大规模湿地建模方案,该方案考虑了微地形对地下水位深度和碳通量的异质影响。我将此新方案合并到可变渗透能力(VIC)地表模型中,将其扩展为包括碳循环过程,并将其与现有的湿地甲烷排放模型关联。使用此建模框架,我在1948-2010年期间模拟了西西伯利亚低地(WSL)的湿地水文和生物地球化学。温度和降水的变化会影响地下水位深度和甲烷排放。我发现以前的研究中使用的较简单的方案由于其简化假设的性质而在对世纪末北方湿地甲烷排放的预测中存在+/- 30%的误差。在对WSL中的大量甲烷通量观测值进行校准时,我发现观测到的甲烷排放量具有很强的南北梯度,这只能通过以下方法重现:a)考虑到地下水位深度的亚网格非均质性,以及b)使用空间变化的甲烷排放量参数。由于先前的大多数研究都忽略了这两个控制措施中的至少一个,因此,WSL产生的大部分甲烷排放显然被错误地归因于该区域北半部的多年冻土湿地。最后,我使用CMIP5全球气候模型预测的输出来强制进行21世纪WSL的模拟,并探讨了土壤微生物群落对气候变化的可能响应。 WSL的世纪末甲烷排放量比历史水平高出6%至120%,其范围主要取决于土壤微生物对气候变化的响应的性质。至关重要的是,在一种潜在的情况下,大部分甲烷排放将从WSL的南部转移到北部,那里是多年冻土融化的问题。这些结果表明,有必要同时考虑a)湿地土壤湿度条件下的亚网格异质性,以及b)限制土壤微生物群落对未来气候和植被变化的响应。

著录项

  • 作者

    Bohn, Theodore J.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Hydrology.;Engineering Civil.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号