首页> 外文学位 >Adsorption and adhesion energies of metal films and nanoparticles studied by adsorption calorimetry: Understanding catalytic systems.
【24h】

Adsorption and adhesion energies of metal films and nanoparticles studied by adsorption calorimetry: Understanding catalytic systems.

机译:通过吸附量热法研究的金属膜和纳米颗粒的吸附能和粘附能:了解催化系统。

获取原文
获取原文并翻译 | 示例

摘要

Metal nanoparticles dispersed across solid surfaces form the basis of many important technologies such as heterogeneous catalysts, electrocatalysts, chemical sensors, microelectronics, and fuel cells. Understanding energetics of chemical bonding between the metal and oxide in these systems is important for the development of more efficient devices. First, in Chapter 2, this dissertations discusses a new, ultrahigh vacuum single crystal adsorption calorimeter which is used to directly measure metal adsorption and adhesion energies to model catalytic surfaces from 77-350 K. Some of the key instrumental improvements over previous designs include the capability of real-time metal atom flux monitoring and a decreased thermal radiation contribution to the heat signal. Next, in chapter 3, an improved data analysis method to determine average particle size and number density from low energy ion scattering spectroscopy (LEIS) measurements of nanoparticles that grow with the shape of hemispherical caps is discussed and validated. A correction is applied for the case when nanoparticles cause substrate shadowing due to source ion incident and detection angles being non-normal to the surface. The model was demonstrated for Cu growth on slightly reduced CeO2(111) where it improved the fit ~3-fold.;In Chapters 4 and 5, the adsorption energy and growth morphology of vapor deposited copper atoms onto slightly reduced CeO2(111) was measured at 100 and 300 K. Copper was determined to grow as three-dimensional particles with preferential adsorption to stoichiometric ceria sites, opposite of what has been observed for other metals such as Ag, Au and Pt on ceria. An important result was the measurement of copper atom chemical potentials starting from single copper atoms up to large nanoparticles which provides unique insight into the increased reactivity of the small aggregates and their propensity to sinter. In Chapter 6, gold adsorption energies onto slightly reduced ceria was also measured. Like copper, gold grows as hemispherical caps on ceria, but with a smaller number density for a given temperature and extent of ceria reduction. Gold also adsorbs more strongly to reduced ceria sites than to stoichiometric sites. The adhesion energy between copper, silver, and gold nanoparticles and slightly reduced ceria was compared to previous adhesion energy trends discovered by our group. Adhesion energy of metals onto well-defined oxides adhere more strongly to ceria than MgO, and scales with the adsorbed metal's heat of sublimation minus the heat of formation of the its most stable oxide, providing a method to predict adhesion energies of metals to oxides. Lastly, in Chapter 7, the adsorption and adhesion energy of 2D copper overlayers on Pt(111) was measured by calorimetry. The adsorption energy of copper atoms in each layer was used to explain the thermodynamic driving force of copper to form the quasi-pseudomorphic layer-by-layer structure.;These studies provide new insights into interfacial chemical bonding and provide important benchmarks to test new density functional theory calculations. The results will aid in the rational design of more efficient catalysts. Future aims and conclusions of this work are presented in Chapter 8.
机译:分散在固体表面上的金属纳米颗粒构成了许多重要技术的基础,例如非均相催化剂,电催化剂,化学传感器,微电子学和燃料电池。了解这些系统中金属与氧化物之间化学键的能级对于开发更高效的器件很重要。首先,在第二章中,本论文讨论了一种新型的超高真空单晶吸附量热仪,该量热仪可直接测量金属的吸附和粘附能,以模拟77-350 K的催化表面。与以前的设计相比,一些重要的仪器改进包括实时金属原子通量监测的功能以及减少的热辐射对热信号的贡献。接下来,在第3章中,讨论并验证了一种改进的数据分析方法,该方法可通过低能量离子散射光谱(LEIS)测量以半球形帽状生长的纳米颗粒来确定平均粒径和数密度。当纳米颗粒由于源离子的入射和检测角度不垂直于表面而导致基板阴影时,将进行校正。该模型证明了Cu在稍微还原的CeO2(111)上的生长,并提高了拟合度约3倍。;在第4和第5章中,气相沉积铜原子在稍微还原的CeO2(111)上的吸附能和生长形态为在100 K和300 K下测量。铜被确定为三维颗粒,优先吸附在化学计量的二氧化铈位点上,这与二氧化铈上其他金属(例如Ag,Au和Pt)所观察到的相反。一个重要的结果是从单个铜原子到大的纳米粒子的铜原子化学势的测量,这为小聚集体的增加的反应性及其烧结倾向提供了独特的见解。在第6章中,还测量了在略微还原的二氧化铈上的金吸附能。像铜一样,金以二氧化铈的半球形盖的形式生长,但是在给定的温度和二氧化铈还原程度下,金的密度较小。与还原的二氧化铈位点相比,金还更强地吸附到氧化铈位点上。将铜,银和金纳米颗粒之间的粘附能与氧化铈略有减少的结果与我们小组先前发现的粘附能趋势进行了比较。金属在定义明确的氧化物上的粘附能比MgO更牢固地粘附在二氧化铈上,并随吸附的金属的升华热减去其最稳定的氧化物的形成热而成比例增加,从而提供了一种预测金属对氧化物的粘附能的方法。最后,在第7章中,通过量热法测量了二维铜覆层在Pt(111)上的吸附和粘附能。每一层中铜原子的吸附能被用来解释铜的热力学驱动力,以形成准伪晶状的逐层结构;这些研究为界面化学键合提供了新见识,并为测试新密度提供了重要基准功能理论计算。结果将有助于合理设计更有效的催化剂。第八章介绍了这项工作的未来目标和结论。

著录项

  • 作者

    James, Trevor E.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Chemistry.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号