首页> 外文学位 >Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method.
【24h】

Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method.

机译:使用金属假象减少(MAR)算法和双能计算机断层扫描(CT)方法进行金属假象减少的剂量学评估。

获取原文
获取原文并翻译 | 示例

摘要

Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.;Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.;Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.;Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
机译:目的:计算机断层扫描(CT)是评估患者医疗状况的标准诊断成像方法之一。与磁共振成像(MRI)等其他成像方式相比,CT是一种快速采集成像设备,对骨骼结构具有更高的空间分辨率和更高的对比度噪声比(CNR)。 CT图像通过以Hounsfield单位(HU)为单位的独立值的灰度表示。 HU值较高的材料表示较高的密度。由于重建软件的限制,诸如金属之类的高密度材料往往会错误地增加其周围的HU值。由于金属的存在而导致HU值增加的问题称为金属假象。髋关节假体,牙科填充物,动脉瘤夹和脊柱夹是与临床相关的金属物体的一些示例。这些植入物会产生伪像,例如光束硬化和光子饥饿,这些伪像会扭曲CT图像并降低图像质量。这具有重要意义,因为变形可能会导致图像评估不当,以及治疗计划系统中的剂量计算不正确。为了诊断和治疗目的,正在开发不同的算法来减少这些伪像以获得更好的图像质量。但是,关于伪影校正对剂量计算准确性的影响的信息非常有限。这项研究评估了金属伪影减少算法对CT图像上严重伪影的剂量效应。本研究使用基于宝石光谱成像(GSI)的MAR算法,基于投影的金属伪影减少(MAR)算法和双能方法。;材料与方法:基于宝石光谱成像(GSI)的SMART金属伪像还原(MAR)算法是通用电气(GE)嵌入两种不同的CT扫描仪模型中的金属伪影降低协议,并且双能成像方法是由杜克大学开发的。这三种方法均用于本研究中,对带有严重金属伪影的CT图像进行剂量学评估。研究的第一部分使用了带有四个碘注射器的水模。设计了两组计划,即多弧计划和单弧计划,使用了容积调制弧光治疗(VMAT)技术来避免或最小化高密度物体的影响。研究的第二部分使用了基于投影的MAR算法和双重能量方法。比较计划治疗量(PTV)的计算剂量(平均剂量,最小剂量和最大剂量),并计算均一性指数(HI)。结果:(1)如果不使用基于GSI的MAR,则平均剂量与观察到绝对剂量范围为每部分3.4-5.7%。相比之下,使用基于GSI的MAR算法,该误差降低到每分数0.09-2.3%的范围。使用和不使用基于GSI的MAR算法之间,百分比差异在1.7-4.2%之间。 (2)最大剂量值的差异为0.1-3.2%,最小剂量差异的范围为1.5-10.4%,平均剂量差异为1.4-1.7%。还计算出双能方法的均质性指数(HI)为0.068-0.065,采用基于投影的MAR算法的均质性指数为0.063-0.141 .;结论:(1)不使用基于GSI的MAR算法的百分比误差可能会高达5.7%。此错误使放射治疗的目标无效,无法提供更精确的治疗。因此,基于GSI的MAR算法由于其更好的剂量计算精度而是理想的。 (2)基于直接的数值观察,不同技术的平均剂量之间没有明显的偏差,但是最大和最小剂量之间却存在明显偏差。双能量方法的HI几乎达到了理想的零值。总之,与使用或不使用GE MAR算法相比,双能方法对具有金属伪影的图像的计划治疗量(PTV)的剂量计算精度更高。

著录项

  • 作者

    Laguda, Edcer Jerecho.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Medical imaging.;Medicine.;Nuclear physics and radiation.
  • 学位 M.S.
  • 年度 2016
  • 页码 58 p.
  • 总页数 58
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号