首页> 外文学位 >Immunemodulatory effects of hypertonic saline in hemorrhagic shock: In vivo alterations of neutrophil-endothelial dynamics and vascular permeability result in attenuated tissue injury.
【24h】

Immunemodulatory effects of hypertonic saline in hemorrhagic shock: In vivo alterations of neutrophil-endothelial dynamics and vascular permeability result in attenuated tissue injury.

机译:高渗盐水在失血性休克中的免疫调节作用:体内中性粒细胞内皮动力学和血管通透性的改变可减轻组织损伤。

获取原文
获取原文并翻译 | 示例

摘要

Multiple organ dysfunction is the most common cause of late mortality in trauma patients. Despite adequate resuscitation, hemorrhagic shock may progress to a state of profound systemic inflammation where the polymorphonuclear neutrophil (PMN) plays a key role. Resuscitation with hypertonic saline (HTS) may modulate the host inflammatory response in hemorrhagic shock.; A murine hemorrhagic shock model evaluated by cremaster intravital microscopy demonstrated significant in vivo attenuation of neutrophil rolling and adhesion to endothelium (EC) immediately after resuscitation with HTS, as compared to Ringer's lactate (RL). Concurrently, macromolecular leakage from the same post capillary venules was 45% lower in HTS animals.; To better simulate clinical conditions, the model was transformed to recreate two-hit conditions by subjecting resuscitated animals to a subsequent mimicked pulmonary infection. Attenuated neutrophil adhesion to endothelium in HTS animals persisted 5 and 22 hours after resuscitation. Additionally, compared to RL, HTS resuscitation reduced neutrophil lung sequestration (by the myeloperoxidase assay) and neutrophil lung transmigration (by histologic analysis) one day after resuscitation. HTS resuscitation also tended to improve cremaster and lung histologic injury a day after resuscitation conferring a 50% survival advantage for that time interval.; To determine if reductions in tissue injury were due to the ability of HTS to functionally block neutrophil adhesion to endothelium, another variation to the two-hit model was developed. Two additional groups were added to evaluate if supplementation of standard fluid resuscitation with anti adhesion monoclonal antibodies (anti-CD11b and anti-ICAM-1) would reproduce the effects of HTS alone. Although early EC/PMN interactions and 24-hour lung PMN accumulation were similarly attenuated by either HTS alone or RL with anti adhesion blockade, only HTS alone definitely reduced early in vivo macromolecule leakage, and one day lung histologic injury.; Hemorrhagic shock resuscitation with hypertonic saline reduces neutrophil activation and interactions with microvascular endothelium resulting in diminished lung PMN sequestration persisting well beyond the initial resuscitation phase. Yet the anti-adhesive effects of HTS are not essential for HTS-mediated reductions in tissue injury and organ dysfunction. Hypertonic resuscitation may prove to be an immunomodulatory therapy useful in critically ill trauma victims, the precise mechanisms of which need further elucidation.
机译:多器官功能障碍是创伤患者晚期死亡的最常见原因。尽管进行了充分的复苏,但失血性休克可能会发展为严重的全身性炎症,其中多形核中性粒细胞(PMN)起着关键作用。高渗盐水(HTS)复苏可能会调节失血性休克中的宿主炎症反应。通过Cremaster玻璃体活体显微镜评估的小鼠失血性休克模型显示,与林格氏乳酸(RL)相比,用HTS复苏后,中性粒细胞的滚动和与内皮(EC)粘附的体内显着衰减。同时,在HTS动物中,相同毛细血管后静脉的大分子渗漏降低了45%。为了更好地模拟临床状况,通过对复苏的动物进行随后的模拟肺部感染,将模型转化为重击两次的状况。复苏后5和22小时,HTS动物中性粒细胞对内皮的粘附力持续减弱。此外,与RL相比,HTS复苏在复苏后一天可减少中性粒细胞的肺隔离(通过髓过氧化物酶测定)和中性粒细胞的肺迁移(通过组织学分析)。复苏后第二天,HTS复苏也倾向于改善提睾和肺组织学损伤,在该时间间隔内具有50%的生存优势。为了确定组织损伤的减少是否归因于HTS功能性阻断嗜中性白细胞粘附于内皮的能力,因此开发了两次打击模型的另一种形式。添加了另外两个小组来评估补充抗粘连单克隆抗体(抗CD11b和抗ICAM-1)的标准液体复苏是否会重现HTS的作用。尽管早期的EC / PMN交互作用和24小时肺PMN的积累被单独的HTS或具有抗粘连阻滞的RL减弱了,但仅单独的HTS无疑减少了早期体内大分子的渗漏和一天的肺组织学损伤。用高渗盐水进行的失血性休克复苏可减少中性粒细胞的活化以及与微血管内皮的相互作用,从而导致肺PMN隔离减少,并持续到最初的复苏阶段。然而,HTS的抗粘连作用对于HTS介导的组织损伤和器官功能障碍的减轻并不是必不可少的。高渗复苏可能被证明是一种免疫调节疗法,可用于重症创伤患者,其确切机制尚需进一步阐明。

著录项

  • 作者

    Pascual Lopez, Jose L.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Health Sciences Medicine and Surgery.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 R501;R601;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号