首页> 外文学位 >Fabrication and Characterization of Nanostructured Surfaces: Plasmonic Thin Films, Nanowires, Nanorings and Nanochannels.
【24h】

Fabrication and Characterization of Nanostructured Surfaces: Plasmonic Thin Films, Nanowires, Nanorings and Nanochannels.

机译:纳米结构表面的制造和表征:等离子薄膜,纳米线,纳米环和纳米通道。

获取原文
获取原文并翻译 | 示例

摘要

This work demonstrates a method for enhancing the sensitivity of a surface plasmon resonance biosensor, and develops novel nanostructured sensing surfaces. It is divided into the following four sections: Surface plasmon resonance phase imaging on gold thin films, optical diffraction of gold nanowires, fabrication of plasmonic nanoring arrays, and fabrication of nanofluidic channels and networks.;The technique of surface plasmon resonance phase imaging (SPR-PI) was implemented in a linear microarray format. SPR-PI measured the phase shift of p-polarized light incident at the SPR angle reflected from a gold thin film by monitoring the position of a fringe pattern on the interface created with a polarizer-wedge depolarizer combination. SPR-PI was used to measure a self-assembled monolayer of 11-mercaptoundecamine (MUAM) as well as to monitor in situ DNA hybridization. The phase shifts were correctly calculated with a combined Jones matrix and Fresnel equation theory.;Arrays of Au or Pd nanowires were fabricated via the electrochemical process of lithographically patterned nanowire electrodeposition (LPNE) and then characterized with scanning electron microscopy (SEM) and a series of optical diffraction measurements. Up to 60 diffraction orders were observed from the nanowire gratings with separate oscillatory intensity patterns appearing in the even and odd diffraction orders. The presence of these intensity oscillations is attributed to LPNE array fabrication process, and is explained with the Fourier transform of a mathematical model to predict the diffraction intensity patterns.;A novel nanoring fabrication method that combines the process of LPNE with colloidal lithography is described. SEM measurements and Fourier transform near infrared (FT-NIR) absorption spectroscopy were used to characterize the strong NIR plasmonic resonance of the nanoring arrays. The absorption maximum wavelength varied linearly from 1.25 to 3.33 microns as predicted by a simple standing wave model linear antenna theory. This nanoring array fabrication method was also used to electrodeposit concentric double gold nanoring arrays that exhibited multiple NIR plasmonic resonances.;Arrays and networks of nanochannels were created in PDMS from LPNE nanowires in a master-replica process and characterized with SEM, AFM and fluorescence imaging measurements. The PDMS replica was bonded to a glass substrate to create linear arrays of nanofluidic channels that filled with a 99% successful rate as determined from fluorescence imaging and the electrophoretic injection of both dye and nanoparticles. A double LPNE fabrication method was also used to create two-dimensional networks of crossed nanofluidic channels.
机译:这项工作演示了一种提高表面等离振子共振生物传感器的灵敏度的方法,并开发了新颖的纳米结构传感表面。它分为以下四个部分:金薄膜上的表面等离子体共振相成像,金纳米线的光学衍射,等离子体纳米环阵列的制造以及纳米流体通道和网络的制造。表面等离子体共振相成像技术(SPR) -PI)以线性微阵列格式实施。 SPR-PI通过监视由偏光片-楔形消偏器组合产生的界面上的条纹图案的位置,来测量从金薄膜反射的以SPR角入射的p偏振光的相移。 SPR-PI用于测量11-巯基三乙胺(MUAM)的自组装单层以及监测原位DNA杂交。结合琼斯矩阵和菲涅耳方程理论正确地计算了相移;通过光刻图案化的纳米线电沉积(LPNE)的电化学过程制备了Au或Pd纳米线的阵列,然后通过扫描电子显微镜(SEM)进行了一系列表征光学衍射测量。从纳米线光栅观察到多达60个衍射级,在偶数和奇数衍射级出现单独的振荡强度模式。这些强度振荡的存在归因于LPNE阵列的制造过程,并通过数学模型的傅里叶变换进行了解释,以预测衍射强度模式。;描述了一种将LPNE的过程与胶体光刻相结合的新型纳米环制造方法。 SEM测量和傅立叶变换近红外(FT-NIR)吸收光谱用于表征纳米环阵列的强NIR等离子体共振。如简单驻波模型线性天线理论所预测的,最大吸收波长从1.25到3.33微米线性变化。这种纳米环阵列的制造方法还用于电沉积表现出多个NIR等离子体共振的同心双金纳米环阵列;;在LPNE纳米线的PDMS中以主复制过程创建了纳米通道的阵列和网络,并通过SEM,AFM和荧光成像进行了表征测量。将PDMS复制品粘合到玻璃基板上,以创建纳米流体通道的线性阵列,该阵列填充有99%的成功率,这是根据荧光成像以及染料和纳米颗粒的电泳注入确定的。还使用双重LPNE制造方法来创建交叉的纳米流体通道的二维网络。

著录项

  • 作者

    Halpern, Aaron R.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Chemistry General.;Chemistry Inorganic.;Chemistry Physical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号