首页> 外文学位 >Rational design of self-assembled nanostructures based on polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization .
【24h】

Rational design of self-assembled nanostructures based on polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization .

机译:基于水可逆加成-断裂链转移聚合反应合成的聚合物的自组装纳米结构的合理设计。

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in reversible addition-fragmentation chain transfer (RAFT) polymerization have allowed the rational, bottom-up design of biorelevant assemblies. Utilizing foresight, polymers can be tailored to self-assemble into nano-, micro-, and macroscopic structures. Given the size scale on which rationally-designed polymers can be tailored, they hold significant promise in the biomedical field. For example, nanoscale materials can be designed to carry small-molecule and gene therapeutics while macroscopic structures can be tailored for cell growth scaffolds. The design process begins by selecting monomers, chain transfer agents, and reaction conditions which will yield the desired polymer architecture and composition. The work herein builds on these concepts and may be divided into three sections.In the first section, the synthesis of narrowly dispersed, temperature-responsive BAB block copolymers capable of forming physical gels under physiological conditions is described. A difunctional trithiocarbonate was utilized in the aqueous reversible addition fragmentation chain transfer (RAFT) polymerization of the BAB block copolymer, allowing a two-step synthetic approach to obtain a triblock copolymer with symmetrical outer blocks. The outer B blocks of the triblock copolymers consist of poly(N-isopropylacrylamide) (P(NIPAM)) and the inner A block consists of either poly(acrylamide) (P(AM)) or poly(N,N-dimethylacrylamide) (P(DMA)). The copolymers form reversible physical gels above the phase transition temperature of P(NIPAM) at concentrations as low as 7.5 wt% copolymer. Mechanical properties similar to that of collagen, a naturally occurring polypeptide used as a three dimensional in vitro cell growth scaffold, have been achieved. The mechanical properties of the gels as a function of solvent, polymer concentration, and inner block length are discussed. Structural information about the gels was obtained through pulsed field gradient NMR experiments, confocal microscopy, and small angle x-ray microscopy.In the second section, the reversible formation of ordered physical gels from stimuli-responsive ABA [A=P(DMA), B= P(NIPAM))] triblock copolymers is investigated utilizing dynamic light scattering, small angle x-ray scattering, and low-shear rheometry. As the temperature is increased above the phase transition temperature of the P(NIPAM) segment, triblock copolymers under a critical molecular weight are capable of packing into body-centered cubic arrays. Rheometric tests indicate that the storage moduli of the gels at 50°C are inversely related to the molecular weight of the polymer. In addition, cyclic heating of polymer solutions demonstrates the fast, reversible nature of the physical gelation.In the third section, the facile synthesis of polymer-stabilized Au nanoparticles (AuNPs) capable of forming neutral, sterically stable complexes with small interfering RNA (siRNA) is reported. The amine-containing cationic block of poly(N-2-hydroxypropyl methacrylamide-block-N-[3-(dimethylamino)propyl] methacrylamide) was utilized to promote the in situ reduction of Au+3 (NaAuCl4) in solution to Au0 (Au nanoparticles). Subsequently, this nanostructure was utilized to bind siRNA while the nonimmunogenic, hydrophilic block provided steric stabilization. Significant protection against nucleases was demonstrated by enzymatic tests while gene down-regulation experiments indicated successful delivery of siRNA to cancerous cells.
机译:可逆加成-断裂链转移(RAFT)聚合的最新进展已使生物相关组件的设计合理,自下而上。利用预见性,可以对聚合物进行定制以使其自组装成纳米,微观和宏观结构。考虑到可以定制合理设计的聚合物的尺寸规模,它们在生物医学领域具有广阔的前景。例如,可以将纳米级材料设计为携带小分子和基因治疗剂,而可以为细胞生长支架定制宏观结构。设计过程首先选择单体,链转移剂和反应条件,以产生所需的聚合物结构和组成。本文的工作基于这些概念,可分为三个部分。在第一部分中,描述了能够在生理条件下形成物理凝胶的窄分散,温度响应性BAB嵌段共聚物的合成。在BAB嵌段共聚物的水可逆加成断裂链转移(RAFT)聚合中使用了双官能三硫代碳酸酯,从而允许两步合成方法来获得具有对称外部嵌段的三嵌段共聚物。三嵌段共聚物的外部B嵌段由聚(N-异丙基丙烯酰胺)(P(NIPAM))组成,内部A嵌段由聚(丙烯酰胺)(P(AM))或聚(N,N-二甲基丙烯酰胺)组成( P(DMA))。共聚物在P(NIPAM)的相变温度以上会以低至7.5 wt%的共聚物浓度形成可逆的物理凝胶。已经获得了与胶原蛋白相似的机械性能,胶原蛋白是用作三维体外细胞生长支架的天然多肽。讨论了凝胶的机械性能与溶剂,聚合物浓度和内部嵌段长度的关系。有关凝胶的结构信息是通过脉冲场梯度NMR实验,共聚焦显微镜和小角度X射线显微镜获得的。在第二部分中,由刺激响应性ABA [A = P(DMA), B = P(NIPAM))]三嵌段共聚物是利用动态光散射,小角度X射线散射和低剪切流变法研究的。当温度升高到P(NIPAM)链段的相变温度以上时,临界分子量以下的三嵌段共聚物能够堆积到以人体为中心的立方阵列中。流变试验表明,凝胶在50℃的储能模量与聚合物的分子量成反比。此外,聚合物溶液的循环加热证明了物理胶凝的快速,可逆性质。在第三部分中,聚合物稳定的Au纳米颗粒(AuNPs)的轻松合成能够与小干扰RNA(siRNA)形成中性,空间稳定的复合物。 )被报告。利用聚(N-2-羟丙基甲基丙烯酰胺嵌段-N- [3-(二甲基氨基)丙基]甲基丙烯酰胺)的含胺阳离子嵌段促进溶液中Au + 3(NaAuCl4)原位还原为Au0(金纳米颗粒)。随后,利用该纳米结构结合siRNA,同时非免疫原性亲水性嵌段提供了空间稳定性。酶促测试证明了对核酸酶的显着保护作用,而基因下调实验表明将siRNA成功递送至癌细胞。

著录项

  • 作者

    York, Stacey Kirkland.;

  • 作者单位

    The University of Southern Mississippi.;

  • 授予单位 The University of Southern Mississippi.;
  • 学科 Chemistry Polymer.Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号