首页> 外文学位 >Computational Flow Modeling of Human Upper Airway Breathing.
【24h】

Computational Flow Modeling of Human Upper Airway Breathing.

机译:人类上呼吸道呼吸的计算流模型。

获取原文
获取原文并翻译 | 示例

摘要

Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady Large Eddy simulations (LES) and a steady Reynolds Averaged Navier Stokes (RANS) approaches in CFD modeling are discussed. The more challenging FSI approach is modeled first in simple two-dimensional anatomical geometry and then extended to simplified three dimensional geometry and finally in three dimensionally accurate geometries. The concepts of virtual surgery and the differences to CFD are discussed. Finally, the influence of various drug delivery parameters on particle deposition efficiency in airway anatomy are investigated through particle-flow simulations in a nasal airway model.
机译:近年来,生物系统的计算建模在生物医学研究中引起了很多兴趣。本文重点研究计算机模拟在人类上呼吸道气流动力学研究中的应用。随着医学成像技术的发展,现在可以从磁共振图像(MRI)或计算机断层扫描(CT)扫描中重建患者特定的解剖学上准确的呼吸道几何形状,其细节要比传统的尸体铸模模型更为精确。与这些实验和临床研究相比,使用这些个性化的几何模型进行的计算研究具有无创性,易于操作,患者互动最少,提高了准确性的优势。数值模拟可以提供详细的流场,包括速度,流速,气道壁压力,切应力,气道湍流。这些物理量的解释将使人们能够开发出有效的治疗程序,医疗设备,有针对性的药物输送等。本研究的假设是,计算模型可以在应用外科手术或治疗计划之前预测其结果,并指导手术的进行。医生为患者提供更好的治疗。在当前的工作中,使用三种不同的计算方法:计算流体力学(CFD),流-结构相互作用(FSI)和粒子流模拟来研究气道几何形状中的流动。与更具挑战性的FSI方法相比,CFD方法假设气道壁是刚性的,并且相对容易模拟,在FSI方法中,气道壁变形与流量之间也存在相互作用。针对气道体模中的实验测量结果验证了使用不同湍流模型的CFD方法学。演示了使用CFD量化术前和术后气道的两个案例研究,以及使用虚拟手术确定狭窄气道中可能的最佳手术的两个案例研究。讨论了CFD建模中的非稳态大涡模拟(LES)和稳态雷诺平均纳维斯托克斯(RANS)方法。更具挑战性的FSI方法首先在简单的二维解剖几何模型中建模,然后扩展到简化的三维几何模型,最后在三维精确几何模型中建模。讨论了虚拟手术的概念以及与CFD的区别。最后,通过鼻气道模型中的颗粒流模拟研究了各种药物输送参数对气道解剖结构中颗粒沉积效率的影响。

著录项

  • 作者

    Mylavarapu, Goutham.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Engineering Aerospace.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号