首页> 外文学位 >Controller design for stability and rollover prevention of multi-body ground vehicles with uncertain dynamics and faults.
【24h】

Controller design for stability and rollover prevention of multi-body ground vehicles with uncertain dynamics and faults.

机译:具有不确定动力学和故障的多体地面车辆的稳定性和防侧翻控制器设计。

获取原文
获取原文并翻译 | 示例

摘要

Rollover prevention is a fundamental and significant issue for vehicle safety research. Passenger and commercial vehicles with a relatively high center of gravity are especially prone to rollover. Rollover is a threat especially for military vehicles, which operate in severe operational environments and maneuvers. However, many rollover situations cannot be prevented by driver actions alone, even when they are correctly warned. Additional assistance from active anti-rollover control systems can mitigate the deficiency in human capability. Furthermore, rollover events are subject to various perturbations in the rollover parameters (e.g., speed and road adhesion coefficient) and external disturbances (such as adverse weather and terrain conditions). Also vehicles have limited mobility under vehicle component failures resulting from fatigue or field conditions. Hence, the control system has to be fault-tolerant in order to enhance rollover prevention. Thus, with rollover prevention of military multi-body ground vehicles as the main objective of this research, in this dissertation, we first propose a novel control system analysis and design technique by extending the popular Linear Quadratic Regulator (LQR) control design method specializing it for the 'control coupled output regulation' problem. Specifically, in this rollover prevention problem, a 'unified rollover index' is proposed, which captures both the roll dynamics and lateral dynamics, explicitly into the optimization procedure of the LQR framework, which results in a performance index with a coupled term in state and control variables. This LQR design with control coupled output regulation outperforms LQR design with state regulation only, because the cross coupling term helps to prudently allocate the weightings on states and control with the overall performance output minimization as the primary objective rather than individual state regulation. Thus, the proposed rollover prevention technique effectively incorporates the physical nature of the vehicle dynamics into the problem formulation resulting in significantly improved performance. The proposed control design technique is novel and beneficial to the ground vehicle control designers because through this technique, it is shown that the coupling in the vehicle dynamic states and control variables is taken advantage of to improve roll over prevention. In addition, the proposed technique allows us to compare different controller configurations and select the most efficient controller structure in terms of both control effort as well as cost. It is shown that because of the inherent coupling the system has, sometimes it is possible that a well designed single controller (actuator) can result in better performance than multiple controllers (actuators) with improper design. The proposed methodology is illustrated with two applications in the vehicle dynamics area. In the first application, an active steering control system is designed which clearly shows the improved roll over prevention capability of the proposed design compared to the existing designs in the literature. The second application considers a more complicated tractor semi-trailer vehicle and shows how a single active anti-roll bar system at the trailer unit gives better performance than multiple-axle actuators at tractor and trailer together with the double lane change maneuver as the external disturbance. Next the issue of robust control design to handle uncertainties in the vehicle dynamics parameters as well as component faults. Based on the theory of 'Linear interval parameter matrix families', a single robust full state feedback control gain is designed by a convex combination of the control gains designed for finite points (vertices) of the uncertain parameter space. The proposed robust controller design is applied to the multi-body ground vehicle control with uncertainty in the forward speed of the vehicle and the road adhesion coefficient taken into consideration. The results clearly show the efficacy of the proposed robust controller under the assumed perturbations. Thus the proposed techniques in this dissertation help in not only preventing rollover of multi-body ground vehicles with controllers of reduced control effort (which in turn translates to considerable actuator and power savings) but also guarantee the stability and performance for vehicles with uncertain dynamics and faults.
机译:防侧翻是车辆安全研究的一个基本而重要的问题。重心较高的乘用车和商用车特别容易发生侧翻。特别是对于在恶劣的操作环境和机动条件下运行的军用车辆而言,侧翻是一种威胁。但是,即使正确地警告了驾驶员,也无法仅通过驾驶员的动作来防止许多侧翻情况。主动防侧翻控制系统的其他协助可以减轻人的能力不足。此外,侧翻事件在侧翻参数(例如,速度和道路附着系数)和外部干扰(例如不利的天气和地形条件)中受到各种干扰。此外,在由于疲劳或野外条件而导致的车辆部件故障下,车辆的移动性也受到限制。因此,控制系统必须是容错的,以便增强防侧翻功能。因此,以防止军用多体地面车辆的侧翻为研究的主要目标,本文首先通过扩展流行的线性二次调节器(LQR)控制设计方法,提出一种新颖的控制系统分析和设计技术。针对“控制耦合输出调节”问题。具体来说,在这个防止翻滚的问题中,提出了“统一翻滚指数”,该指数同时捕获了侧倾动力学和侧向动力学,同时明确地纳入了LQR框架的优化过程中,从而得出了状态和状态为耦合项的性能指标。控制变量。这种具有控制耦合输出调节的LQR设计优于仅具有状态调节的LQR设计,因为交叉耦合项有助于谨慎地分配状态权重,并以总体性能输出最小化为主要目标而不是个别状态调节为控制。因此,所提出的防侧翻技术有效地将车辆动力学的物理性质结合到问题公式中,从而显着改善了性能。所提出的控制设计技术是新颖的,并且对地面车辆控制设计者是有益的,因为通过该技术,表明利用车辆动态状态和控制变量之间的耦合来改善防侧翻。另外,所提出的技术使我们能够比较不同的控制器配置,并根据控制工作量和成本选择最有效的控制器结构。结果表明,由于系统具有固有的耦合性,有时设计良好的单个控制器(执行器)可能会比设计不当的多个控制器(执行器)产生更好的性能。所提出的方法在车辆动力学领域有两个应用。在第一个应用中,设计了一种主动转向控制系统,与文献中的现有设计相比,该系统清楚地显示了所提出设计的改进的防侧翻能力。第二个应用程序考虑了更复杂的拖拉机半挂车,并显示了在拖车单元上的单个主动式防侧倾杆系统如何比在拖拉机和拖车上的多轴致动器具有更好的性能,以及双车道变更操纵作为外部干扰。接下来的问题是鲁棒的控制设计,以处理车辆动力学参数以及组件故障中的不确定性。基于“线性间隔参数矩阵族”的理论,通过为不确定参数空间的有限点(顶点)设计的控制增益的凸组合设计单个鲁棒的全状态反馈控制增益。所提出的鲁棒控制器设计被应用到多体地面车辆控制中,该方法具有车辆前进速度的不确定性以及考虑到的道路附着系数。结果清楚地表明了所提出的鲁棒控制器在假定扰动下的功效。因此,本论文中提出的技术不仅有助于通过减少控制力的控制器来防止多体地面车辆的侧翻(这反过来意味着可观的执行器和功率节省),而且还可以确保动态和不确定性车辆的稳定性和性能。故障。

著录项

  • 作者

    Huang, Hsun-Hsuan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号