首页> 外文学位 >Characterizing heterogeneous solvation environments and their influence in protein stability and binding through molecular dynamics simulations.
【24h】

Characterizing heterogeneous solvation environments and their influence in protein stability and binding through molecular dynamics simulations.

机译:通过分子动力学模拟表征异质溶剂化环境及其对蛋白质稳定性和结合的影响。

获取原文
获取原文并翻译 | 示例

摘要

How interfacial solvation environments affect the structure and dynamics of biomolecules is an underlying thread of my thesis. I have used molecular dynamics as a tool for understanding the complicated interactions of these solvation environments in modulating both protein stability and ligand binding. One of the most prevalent heterogeneous environments in biology is the lipid-water interface. I have focused my investigation of the lipid-water interface on its role in the stability of both the secondary and tertiary structural elements of the Glycophorin A (GpA) transmembrane dimer. While the tertiary dimer structure is modulated by the hydrophobic lipid bilayer environment, we show that interactions of GpA with ordered interfacial water are commensurate to intra-helical forces. Water reordering in the presence of the GpA transmembrane domains is observed from simulations and is possibly measurable by experiment. Significant water ordering is also observed in a different system, the binding cavity of cellular retinol binding protein II (CRBPII). The hydrophobic retinol ligand compartmentalizes the binding cavity into a set of smaller disconnected pockets, significantly restricting water motion. In the unbound state water rotation in the binding cavity is restricted compared to translational freedom. We interpret this behavior with a "sliding puzzle pieces" model of water dynamics within the cavity. This model allows for water mobility while conserving hydrogen bonding networks. Analysis of co-solute exclusion around the hydrophobic retinol provides the number of waters in the hydration shell of the ligand as well as the number of waters released upon association to CRBPII. A final goal of my thesis is developing computational methods for efficiently calculating the free energy of solvation for different molecular species in an aqueous and solution. Our investigation has been focused on effective applications of the Jarzynski relationship, which relates non-equilibrium work events to the free energy of a process. We have shown that employing a generalized probability density functional form fits our data well and can be used to obtain accurate free energy estimates. Development of this method for pure polar and non-polar solvation environments will allow for eventually extension into more complex heterogeneous environments.
机译:界面溶剂化环境如何影响生物分子的结构和动力学是我论文的基础。我已经使用分子动力学作为工具来理解这些溶剂化环境在调节蛋白质稳定性和配体结合中的复杂相互作用。生物学中最普遍的异质环境之一是脂质-水界面。我对脂质-水界面的研究集中在其在糖皮质激素A(GpA)跨膜二聚体的二级和三级结构元素的稳定性中的作用。虽然三级二聚体结构是由疏水脂质双层环境调节的,但我们表明,GpA与有序界面水的相互作用与螺旋内力相当。从模拟观察到在存在GpA跨膜结构域的情况下水的重排,并且可以通过实验来测量。在不同的系统,细胞视黄醇结合蛋白II(CRBPII)的结合腔中也观察到了明显的水排序。疏水性视黄醇配体将结合腔分隔成一组较小的不连续口袋,从而显着限制了水的运动。与平移自由度相比,在未结合状态下,约束腔中的水旋转受到限制。我们用腔内水动力学的“滑动拼图”模型来解释这种行为。该模型允许水迁移,同时保留氢键网络。疏水视黄醇周围的共溶质排除分析提供了配体水合壳中的水数量以及与CRBPII缔合时释放的水数量。本文的最终目标是开发一种计算方法,以有效地计算水溶液和溶液中不同分子物种的溶剂化自由能。我们的研究集中在Jarzynski关系的有效应用上,该关系将非平衡工作事件与过程的自由能相关。我们已经证明,采用广义概率密度函数形式可以很好地拟合我们的数据,并且可以用来获取准确的自由能估计值。针对纯极性和非极性溶剂化环境的这种方法的开发将最终扩展到更复杂的异构环境中。

著录项

  • 作者

    Nanda, Hirsh.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号