首页> 外文学位 >Cell envelope constituents of Pseudomonas putida contributing to growth and survival in low-water-content habitats.
【24h】

Cell envelope constituents of Pseudomonas putida contributing to growth and survival in low-water-content habitats.

机译:恶臭假单胞菌的细胞被膜成分有助于低水含量生境中的生长和存活。

获取原文
获取原文并翻译 | 示例

摘要

The ability of bacteria to respond to the ever changing environmental conditions they encounter requires the utilization of a broad range of colonization and survival strategies. One of the most important and probably least understood factors determining bacterial activity in terrestrial habitats is water availability. The goal of this dissertation research was to identify traits that contribute to maintaining a functional cell envelope when cells are dehydrated, which will help us to assess the scope of physiological changes necessary for growth in low-water-content habitats. The primary objective was to identify genes that are specifically regulated by dehydration (matric stress), and not by a thermodynamically-equivalent solute (osmotic) stress. We used transposon mutagenesis combined with a screen to identify genes in the soil and rhizosphere colonizing Pseudomonas putida strain mt-2. Although some of the w&barbelow;ater d&barbelow;eprivation-c&barbelow;ontrolled (wdc) genes were regulated by growth phase, temperature, or toluene exposure, most were specifically induced by matric stress, indicating that bacteria respond differently to a matric stress than to a solute stress. The knowledge of the function of these matric stress-regulated wdc genes allowed us to develop a model of tolerance mechanisms necessary for growth and survival in water-limited environments. Moreover, we found that most wdc loci contributed to survival in low-water-content habitats. One of the identified wdc genes encodes a putative periplasmic lysophospholipase, indicating that dehydration stress disrupts membrane integrity. We determined that lysophospholipids (LPL) accumulated in the wild type when grown under matric stress conditions, but not when grown in the absence of stress or under solute stress conditions. In contrast, the putative lysophospholipase-deficient mutant accumulated LPL even in the absence of a matric stress, indicating that this periplasmic lysophospholipase removes LPL. Exogenously supplied LPL was toxic to P. putida and the mutant was more sensitive than the wild type to LPL. Finally, we observed that biofilm cells are more desiccation-tolerant than planktonic cells and that matric stress is more stressful to cells than solute stress.
机译:细菌对所遇到的不断变化的环境条件作出反应的能力要求利用广泛的定殖和生存策略。决定陆地生境中细菌活动的最重要且可能最不为人知的因素之一是水的可获得性。本论文研究的目的是确定在细胞脱水时有助于维持功能性细胞包膜的性状,这将有助于我们评估在低含水量生境中生长所需的生理变化范围。主要目的是鉴定受脱水(基质胁迫)而不是受热力学等价的溶质(渗透)胁迫特异性调节的基因。我们使用了转座子诱变与筛选相结合,以鉴定定植恶臭假单胞菌mt-2的土壤和根际中的基因。尽管有些won-trolled(wdc)基因受生长阶段,温度或甲苯暴露的调节,但大多数是由基质胁迫特异性诱导的,这表明细菌对基质胁迫的反应与对基质胁迫的反应不同。溶质应力。这些基质应力调控的wdc基因的功能的知识使我们能够建立一个在水有限的环境中生长和生存所必需的耐受机制模型。此外,我们发现大多数wdc基因座都有助于在水含量低的栖息地中生存。鉴定出的wdc基因之一编码一种假定的周质溶血磷脂酶,表明脱水应力破坏了膜的完整性。我们确定溶血磷脂(LPL)在基质胁迫条件下生长时在野生型中积累,而在无胁迫或溶质胁迫条件下生长时不积累。相反,即使在没有基质胁迫的情况下,假定的溶血磷脂酶缺陷型突变体也会积聚LPL,表明该周质溶血磷脂酶可以去除LPL。外源提供的LPL对恶臭假单胞菌有毒,该突变体比野生型对LPL更敏感。最后,我们观察到生物膜细胞比浮游细胞更耐干燥,并且基质应力比溶质应力对细胞的压力更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号