首页> 外文学位 >Automated sensing and three-dimensional analysis of internally braced excavations.
【24h】

Automated sensing and three-dimensional analysis of internally braced excavations.

机译:内部支撑开挖的自动感应和三维分析。

获取原文
获取原文并翻译 | 示例

摘要

Design of deep supported excavations in urban environments requires an accurate prediction of soil, support system, and adjacent structure response to construction activities. Current empirical and numerical design methods are limited by soil parameter determination, due to soil variability and disturbance effects, and geometric simplifications. Observational and inverse analysis methods have been developed for deep excavation analysis to allow adaptation of excavation support design based on support system performance at early stages of construction. Manual collection and processing of the performance monitoring data, required for adaptive design methods, is often too time consuming for successful implementation of these methods. However, development of automated, remote-access geotechnical and structural instrumentation techniques allow timely data transfer and successful implementation of adaptive design methods.; In addition to soil parameter variability, finite element methods for excavation support design are often limited by simplifications of construction procedures and geometry to allow for two-dimensional (2D) plane-strain analysis. A number of case histories and numerical analyses have demonstrated that deep excavation geometry is greatly influenced by excavation sequence and three-dimensional (3D) corner restraining effects.; A combination of developing and traditional geotechnical and structural monitoring instrumentation was implemented on the Ford Engineering Design Center (FEDC) excavation site, on the Northwestern University campus, in Evanston, Illinois. This dissertation describes development and deployment of an automated, remote-access optical survey station and remote-access tiltmeters which allowed for monitoring and analysis of soil and structure response to the FEDC excavation in 'real-time'. A method of determining thermal and earth loading of internal bracing members from 'real-time' strain gage observations is developed and proposed herein.; This dissertation also investigated the influence of excavation sequence and three-dimensional geometry on finite element calculation of soil and support system response to deep excavations. FEDC slope inclinometer and internal bracing load data were compared to soil and support responses calculated with 3D finite element models to demonstrate the influence of excavation sequence on soil and support system response. Lastly, a 3D finite element parametric analysis was conducted and is described herein, which illustrates influence of soil stratigraphy, support system stiffness and excavation geometry on the three-dimensional restraining effects.
机译:在城市环境中进行深支撑开挖的设计需要对土壤,支撑系统以及邻近结构对建筑活动的响应进行准确的预测。由于土壤的可变性和干扰效应以及几何简化,当前的经验和数值设计方法受到土壤参数确定的限制。已经开发了用于深基坑分析的观测和反分析方法,以允许在施工初期根据支撑系统的性能来适应基坑支护设计。自适应设计方法所需的手动收集和处理性能监视数据对于成功实施这些方法而言通常太耗时。但是,自动化,远程访问的岩土和结构仪器技术的发展使及时的数据传输和适应性设计方法的成功实施成为可能。除土壤参数可变性外,开挖支护设计的有限元方法通常还受简化施工程序和几何形状的限制,以允许进行二维(2D)平面应变分析。大量的案例历史和数值分析表明,深基坑的几何形状受开挖顺序和三维(3D)拐角约束效果的影响很大。在美国伊利诺伊州埃文斯顿西北大学校园的福特工程设计中心(FEDC)开挖现场实施了开发中的和传统的岩土和结构监测仪器的组合。本文介绍了自动化,远程访问的光学测量站和远程倾斜仪的开发和部署,它们可以“实时”监测和分析土壤和结构对FEDC开挖的响应。本文提出并提出了一种从“实时”应变计观测值确定内部支撑构件的热负荷和土负荷的方法。本文还研究了开挖顺序和三维几何形状对土体和支护系统对深基坑响应的有限元计算的影响。将FEDC坡度测斜仪和内部支撑载荷数据与3D有限元模型计算的土和支护响应进行了比较,以证明开挖顺序对土和支护系统响应的影响。最后,进行了3​​D有限元参数分析,并在此进行了描述,该分析说明了土壤地层,支撑系统刚度和开挖几何形状对三维约束效果的影响。

著录项

  • 作者

    Blackburn, James Tanner.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Civil.; Geotechnology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 347 p.
  • 总页数 347
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号