首页> 外文学位 >Numerical Methods in Quantum Mechanics: Analysis of Numerical Schemes on One-Dimensional Schrodinger Wave Problems.
【24h】

Numerical Methods in Quantum Mechanics: Analysis of Numerical Schemes on One-Dimensional Schrodinger Wave Problems.

机译:量子力学中的数值方法:一维Schrodinger波问题的数值方案分析。

获取原文
获取原文并翻译 | 示例

摘要

The motion and behavior of quantum processes can be described by the Schrodinger equation using the wave function, Psi(x,t). The use of the Schrodinger equation to study quantum phenomena is known as Quantum Mechanics, akin to classical mechanics being the tool to study classical physics. This research focuses on the emphasis of numerical techniques: Finite-Difference, Fast Fourier Transform (spectral method), finite difference schemes such as the Leapfrog method and the Crank-Nicolson scheme and second quantization to solve and analyze the Schrodinger equation for the infinite square well problem, the free particle with periodic boundary conditions, the barrier problem, tight-binding hamiltonians and a potential wall problem.;We discuss these techniques and the problems created to test how these different techniques draw both physical and numerical conclusions in a tabular summary. We observed both numerical stability and quantum stability (conservation of energy, probability, momentum, etc.). We found in our results that the Crank-Nicolson scheme is an unconditionally stable scheme and conserves probability (unitary), and momentum, though dissipative with energy. The time-independent problems conserved energy, momentum and were unitary, which is of interest, but we found when time-dependence was introduced, quantum stability (i.e. conservation of mass, momentum, etc.) was not implied by numerical stability. Hence, we observed schemes that were numerically stable, but not quantum stable as well as schemes that were quantum stable, but not numerically stable for all of time, t. We also observed that second quantization removed the issues with stability as the problem was transformed into a discrete problem. Moreover, all quantum information is conserved in second quantization. This method, however, does not work universally for all problems.
机译:量子过程的运动和行为可以使用波函数Psi(x,t)通过Schrodinger方程来描述。使用薛定inger方程研究量子现象被称为量子力学,类似于经典力学是研究经典物理学的工具。这项研究的重点是数值技术:有限差分,快速傅立叶变换(频谱方法),有限差分方案(如Leapfrog方法和Crank-Nicolson方案)以及用于量化和分析无穷平方的Schrodinger方程的二次量化井问题,具有周期性边界条件的自由粒子,障碍问题,紧密结合的哈密尔顿和潜在的壁问题。;我们在表格中讨论了这些技术以及为测试这些不同技术如何得出物理和数值结论而创建的问题。我们观察到数值稳定性和量子稳定性(能量守恒,概率,动量等)。我们在结果中发现,Crank-Nicolson方案是无条件稳定的方案,尽管耗散能量,但可以保留概率(单位)和动量。与时间无关的问题守恒于能量,动量并且是一元的,这是令人感兴趣的,但是我们发现,当引入时间依赖性时,量子稳定性(即质量,动量等的守恒)并没有暗示量子稳定性。因此,我们观察到在所有时间t内数值稳定但量子不稳定的方案以及量子稳定但数值不稳定的方案。我们还观察到,随着问题被转化为离散问题,第二次量化消除了问题的稳定性。此外,所有量子信息在第二量化中均被保留。但是,这种方法并非对所有问题都通用。

著录项

  • 作者

    Jones, Marvin Quenten, Jr.;

  • 作者单位

    North Carolina Agricultural and Technical State University.;

  • 授予单位 North Carolina Agricultural and Technical State University.;
  • 学科 Applied Mathematics.;Physics General.;Physics Quantum.
  • 学位 M.S.
  • 年度 2013
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号