首页> 外文学位 >Aberrant epigenetic silencing of tumor suppressor genes in human cancer: The roles of DNA hypermethylation and the histone code.
【24h】

Aberrant epigenetic silencing of tumor suppressor genes in human cancer: The roles of DNA hypermethylation and the histone code.

机译:人类癌症中肿瘤抑制基因的异常表观遗传沉默:DNA高度甲基化和组蛋白密码的作用。

获取原文
获取原文并翻译 | 示例

摘要

Aberrant DNA hypermethylation is a critical event in the silencing of many essential tumor suppressor genes in human cancer and is known to involve histone deacetylation. More recently, methylation of key lysine residues of histone H3 has been shown to associate with or determine active versus inactive transcription states. We show here that the two processes are critically linked. We have mapped key elements of the histone code along the DNA hypermethylated, silenced hMLH1 gene promoter in RKO colorectal cancer cells compared to the DNA unmethylated, active hMLH1 gene promoter in SW480 colorectal cancer cells. We show that the di- form of methyl-H3-K9 and the di- and tri-forms of methyl-H3-K27, as well as the histone methyltransferase (HMT) responsible for catalyzing tri-methyl-H3-K27, EZH2, are strikingly enriched along a critical region of the hypermethylated inactive gene promoter but severely depleted in the same region along the unmethylated active promoter. The mono- and tri-forms of methyl-H3-K9, and the mono-form of methyl-H3-K27 to a lesser extent, show similar trends, although they are limited to a key part of the region examined, which spans the region of highest CpG density along the promoter. Conversely, acetyl-H3 (K9 and K14) and di-methyl-H3-K4 are remarkably enriched along the unmethylated active hMLH1 gene promoter but depleted to virtually undetectable levels along the hypermethylated, transcriptionally inactive gene promoter. Furthermore, we show that upon pharmacologic inhibition of the DNMTs with 5-Aza-dC, only key histone modifications are reversed along the hypermethylated gene promoter, namely acetyl-H3 (K9 and 14) and di-methyl-H3-K4 are increased and di-methyl-H3-K9, as well as the EZH2 HMT, are lost; however, the other marks do not change appreciably. Examination of the dynamics upon 5-Aza-dC treatment reveals that DNA demethylation occurs first and is followed next by reactivation of gene transcription, which precedes histone code reversal. This sequence of events, the fact that only key histone marks are altered, and recent findings from others suggest that DNA demethylation causes reactivation of gene transcription, which leads to histone replacement, and subsequently, to key histone modification changes. In contrast to the results after inhibition of DNA methylation, depletion of the EZH2 HMT in RKO cells did not lead to reactivation of gene transcription, to loss of DNA methylation, or to changes in other histone modifications, although it resulted in a striking loss of the tri-methyl-H3-K27 mark, both globally and at the hypermethylated silenced hMLH1 gene promoter. These results suggest that the DNA hypermethylation is the dominant force in maintaining the "locked in" irreversibly silenced state of tumor suppressor genes in human cancer. We propose, then, that histone modifications, including the EZH2-mediated tri-methyl-H3-K27 mark, may play an essential role earlier in the aberrant epigenetic process, possibly in initiating epigenetic silencing or in converting a reversible silent state to an irreversibly silent state.
机译:DNA异常甲基化是人类癌症中许多重要肿瘤抑制基因沉默的关键事件,并且已知与组蛋白脱乙酰化有关。最近,已证明组蛋白H3的关键赖氨酸残基的甲基化与或确定活性与非活性转录状态相关。我们在这里表明这两个过程是至关重要的。与SW480大肠癌细胞中的DNA未甲基化,活跃的hMLH1基因启动子相比,我们已经在RKO大肠癌细胞中的DNA高甲基化,沉默的hMLH1基因启动子上绘制了组蛋白编码的关键元件。我们证明了甲基H3-K9的二价形式和甲基H3-K27的二价和三价形式,以及负责催化三甲基H3-K27,EZH2的组蛋白甲基转移酶(HMT),沿高度甲基化的非活性基因启动子的关键区域显着富集,但沿未甲基化的活性启动子的相同区域中的蛋白严重消耗。甲基-H3-K9的单和三形式以及甲基-H3-K27的单形式在较小程度上显示出相似的趋势,尽管它们仅限于所研究区域的关键部分。沿着启动子的最高CpG密度区域。相反,乙酰基-H3(K9和K14)和二甲基-H3-K4沿未甲基化的活性hMLH1基因启动子显着富集,但沿高甲基化的,转录失活的基因启动子几乎被检测不到。此外,我们显示在用5-Aza-dC抑制DNMT的药理作用时,只有关键的组蛋白修饰沿超甲基化的基因启动子逆转,即乙酰基-H3(K9和14)和二甲基-H3-K4增加并且二甲基-H3-K9和EZH2 HMT丢失;但是,其他标记没有明显变化。对5-Aza-dC处理后的动力学进行检查后发现,DNA脱甲基首先发生,然后是基因转录的重新激活,随后是组蛋白编码反转。这种事件的顺序,只有关键的组蛋白标记被改变的事实,以及最近来自其他人的发现表明,DNA去甲基化会导致基因转录的重新激活,从而导致组蛋白的替换,进而导致关键的组蛋白修饰的改变。与抑制DNA甲基化后的结果相反,RKO细胞中EZH2 HMT的消耗不会导致基因转录的重新激活,DNA甲基化的丧失或其他组蛋白修饰的改变,尽管这会导致DNA的显着丧失。三甲基-H3-K27标记,无论是在全局上还是在高甲基化沉默的hMLH1基因启动子处。这些结果表明,DNA高甲基化是维持人类癌症中肿瘤抑制基因不可逆转的沉默状态的主要力量。然后,我们提出组蛋白修饰,包括EZH2介导的三甲基-H3-K27标记,可能在异常表观遗传过程的早期发挥重要作用,可能在启动表观遗传沉默或将可逆沉默状态转变为不可逆转状态沉默状态。

著录项

  • 作者

    Fahrner, Jill A.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Molecular.; Biology Genetics.; Health Sciences Oncology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;遗传学;肿瘤学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号