首页> 外文学位 >Investigating Device Physics in Bulk-Heterojunction Organic Solar Cells through Materials Engineering of Interfaces.
【24h】

Investigating Device Physics in Bulk-Heterojunction Organic Solar Cells through Materials Engineering of Interfaces.

机译:通过界面材料工程研究大体积异质结有机太阳能电池中的器件物理。

获取原文
获取原文并翻译 | 示例

摘要

We have designed and implemented several organic photovoltaic materials with the goal of engineering interfaces within bulk-heterojunction organic solar cells. In one project, we synthesized a C60 bis-adduct surfactant for use as a buffer layer between the photoactive layer and the thermally evaporated metal top contact of conventional structure, bulk-heterojunction organic solar cells. By systematically varying the work function of the contact metal, with and without the surfactant buffer layer, we gained insight into the physics governing the photoactive layer/metal interface and vastly improved the device performance. By applying Mott-Schottky analysis to the capacitance-voltage data obtained for these devices we were able to conclude that the surfactant modifies the metal work function to an appreciable extent, and allows for efficient charge extraction and significantly enhanced open-circuit voltage regardless of the chosen contact metal. This enhancement allowed us to use more air-stable metals that would ordinarily be prohibited due to suboptimal energy level alignment at the electron-collecting electrode. In a second line of investigation, we used impedance spectroscopy to probe the charge carrier recombination dynamics and their effects on device performance in organic solar cells composed of poly(indacenodithiophene-co-phananthrene-quinoxaline), as well as its fluorinated derivatives, and various fullerenes. We find that the morphology of the blended photoactive layer has a strong influence on the electronic density-of-states distribution, which in turn directly affects the recombination rate as well as the achievable open-circuit voltage. We show that attempting to increase the open-circuit voltage through structurally tuning the energy levels of polymer and fullerene inadvertently introduces different bulk phase separation that leads to a reduction in photocurrent. We observe that the recombination lifetime decreases more dramatically with increasing excess photogenerated charge carrier density for blends with more finely separated phases and propose that the resulting increase in recombination surface area leads directly to reduced overall device performance, despite a marked increase in open-circuit voltage.
机译:我们已经设计并实现了几种有机光伏材料,其目标是在体-异质结有机太阳能电池中实现工程接口。在一个项目中,我们合成了C60双加合物表面活性剂,用作光敏层和常规结构的本体-异质结有机太阳能电池的热蒸发金属顶触点之间的缓冲层。通过系统地改变有或没有表面活性剂缓冲层的接触金属的功函数,我们获得了控制光敏层/金属界面的物理知识,并极大地改善了器件性能。通过对这些器件获得的电容-电压数据进行Mott-Schottky分析,我们可以得出结论,表面活性剂可在一定程度上修饰金属功函数,并能有效地提取电荷并显着提高开路电压,而与选择接触金属。这种增强使我们能够使用更多的空气稳定金属,这些能量通常由于电子收集电极处的能量水平未达到最佳状态而被禁止使用。在研究的第二条线中,我们使用了阻抗光谱技术来研究载流子复合动力学及其对由聚(茚并二噻吩并菲-喹啉-喹喔啉)及其氟化衍生物组成的有机太阳能电池中器件性能的影响。富勒烯。我们发现,混合的光敏层的形态对电子态密度分布有很大的影响,进而直接影响复合率以及可实现的开路电压。我们表明,试图通过结构上调节聚合物和富勒烯的能级来增加开路电压会无意间引入了不同的本体相分离,从而导致了光电流的减少。我们观察到,对于具有更精细分离相的共混物,随着过量光生电荷载流子密度的增加,复合寿命会显着降低,并提出,尽管开路电压明显增加,但复合表面积的增加直接导致整体器件性能下降。 。

著录项

  • 作者

    O'Malley, Kevin M.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Chemistry General.;Chemistry Organic.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 61 p.
  • 总页数 61
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号