首页> 外文学位 >Virtual and topological coordinate based routing, mobility tracking and prediction in 2D and 3D wireless sensor networks.
【24h】

Virtual and topological coordinate based routing, mobility tracking and prediction in 2D and 3D wireless sensor networks.

机译:在2D和3D无线传感器网络中基于虚拟和拓扑坐标的路由,移动性跟踪和预测。

获取原文
获取原文并翻译 | 示例

摘要

A Virtual Coordinate System (VCS) for Wireless Sensor Networks (WSNs) characterizes each sensor node's location using the minimum number of hops to a specific set of sensor nodes called anchors. VCS does not require geographic localization hardware such as Global Positioning System (GPS), or localization algorithms based on Received Signal Strength Indication (RSSI) measurements. Topological Coordinates (TCs) are derived from Virtual Coordinates (VCs) of networks using Singular Value Decomposition (SVD). Topology Preserving Maps (TPMs) based on TCs contain 2D or 3D network topology and directional information that are lost in VCs. This thesis extends the scope of VC and TC based techniques to 3D sensor networks and networks with mobile nodes. Specifically, we apply existing Extreme Node Search (ENS) for anchor placement for 3D WSNs. 3D Geo-Logical Routing (3D-GLR), a routing algorithm for 3D sensor networks that alternates between VC and TC domains is evaluated. VC and TC based methods have hitherto been used only in static networks. We develop methods to use VCs in mobile networks, including the generation of coordinates, for mobile sensors without having to regenerate VCs every time the topology changes. 2D and 3D Topological Coordinate based Tracking and Prediction (2D-TCTP and 3D-TCTP) are novel algorithms developed for mobility tracking and prediction in sensor networks without the need of physical distance measurements.;Most existing 2D sensor networking algorithms fail or perform poorly in 3D networks. Developing VC and TC based algorithms for 3D sensor networks is crucial to benefit from the scalability, adjustability and flexibility of VCs as well as to overcome the many disadvantages associated with geographic coordinate systems. Existing ENS algorithm for 2D sensor networks plays a key role in providing a good anchor placement and we continue to use ENS algorithm for anchor selection in 3D network. Additionally, we propose a comparison algorithm for ENS algorithm named Double-ENS algorithm which uses two independent pairs of initial anchors and thereby increases the coverage of ENS anchors in 3D networks, in order to further prove if anchor selection from original ENS algorithm is already optimal. Existing Geo-Logical Routing (GLR) algorithm demonstrates very good routing performance by switching between greedy forwarding in virtual and topological domains in 2D sensor networks. Proposed 3D-GLR extends the algorithm to 3D networks by replacing 2D TCs with 3D TCs in TC distance calculation. Simulation results show that the 3D-GLR algorithm with ENS anchor placement can significantly outperform current Geographic Coordinates (GCs) based 3D Greedy Distributed Spanning Tree Routing (3D-GDSTR) algorithm in various network environments. This demonstrates the effectiveness of ENS algorithm and 3D-GLR algorithm in 3D sensor networks.;Tracking and communicating with mobile sensors has so far required the use of localization or geographic information. This thesis presents a novel approach to achieve tracking and communication without geographic information, thus significantly reducing the hardware cost and energy consumption. Mobility of sensors in WSNs is considered under two scenarios: dynamic deployment and continuous movement. An efficient VC generation scheme, which uses the average of neighboring sensors' VCs, is proposed for newly deployed sensors to get coordinates without flooding based VC generation. For the second scenario, a prediction and tracking algorithm called 2D-TCTP for continuously moving sensors is developed for 2D sensor networks. Predicted location of a mobile sensor at a future time is calculated based on current sampled velocity and direction in topological domain. The set of sensors inside an ellipse-shaped detection area around the predicted future location is alerted for the arrival of mobile sensor for communication or detection purposes. Using TPMs as a 2D guide map, tracking and prediction performances can be achieved similar to those based on GCs. A simple modification for TPMs generation is proposed, which considers radial information contained in the first principle component from SVD. This modification improves the compression or folding at the edges that has been observed in TPMs, and thus the accuracy of tracking. 3D-TCTP uses a detection area in the shape of a 3D sphere. 3D-TCTP simulation results are similar to 2D-TCTP and show competence comparable to the same algorithms based on GCs although without any 3D geographic information.
机译:无线传感器网络(WSN)的虚拟坐标系(VCS)使用到特定的一组称为锚点的传感器节点的最小跳数来表征每个传感器节点的位置。 VCS不需要地理定位硬件(例如,全球定位系统(GPS))或基于接收信号强度指示(RSSI)测量的定位算法。使用奇异值分解(SVD)从网络的虚拟坐标(VC)派生拓扑坐标(TC)。基于TC的拓扑保留图(TPM)包含2D或3D网络拓扑以及VC中丢失的方向信息。本文将基于VC和TC的技术的范围扩展到3D传感器网络和具有移动节点的网络。具体来说,我们将现有的极端节点搜索(ENS)应用到3D WSN的锚点放置中。评估了3D地理逻辑路由(3D-GLR),这是一种在VC和TC域之间交替的3D传感器网络的路由算法。迄今为止,基于VC和TC的方法仅在静态网络中使用。我们开发了在移动网络中使用VC的方法,包括为移动传感器使用坐标的方法,而无需每次拓扑变化时都重新生成VC。基于2D和3D拓扑坐标的跟踪和预测(2D-TCTP和3D-TCTP)是为无需物理距离测量而在传感器网络中进行移动性跟踪和预测而开发的新颖算法;大多数现有的2D传感器网络算法失败或性能较差。 3D网络。为3D传感器网络开发基于VC和TC的算法,对于受益于VC的可伸缩性,可调节性和灵活性以及克服与地理坐标系统相关的许多缺点至关重要。现有的用于2D传感器网络的ENS算法在提供良好的锚位置方面起着关键作用,我们将继续使用ENS算法在3D网络中选择锚。此外,我们提出了一种针对ENS算法的比较算法,称为Double-ENS算法,该算法使用两对独立的初始锚点,从而增加了3D网络中ENS锚点的覆盖范围,以进一步证明从原始ENS算法中选择锚点是否已经是最佳选择。现有的地理逻辑路由(GLR)算法通过在2D传感器网络中的虚拟域和拓扑域中的贪婪转发之间进行切换,展示了非常好的路由性能。提议的3D-GLR通过在TC距离计算中将2D TC替换为3D TC,将算法扩展到3D网络。仿真结果表明,在各种网络环境中,带有ENS锚点的3D-GLR算法可以显着优于基于当前地理坐标(GC)的3D贪婪分布式生成树路由(3D-GDSTR)算法。这证明了ENS算法和3D-GLR算法在3D传感器网络中的有效性。到目前为止,与移动传感器进行跟踪和通信需要使用定位或地理信息。本文提出了一种无需地理信息即可实现跟踪和通信的新颖方法,从而大大降低了硬件成本和能耗。在两种情况下考虑了无线传感器网络中传感器的移动性:动态部署和连续移动。对于新部署的传感器,提出了一种有效的VC生成方案,该方案使用相邻传感器VC的平均值,从而无需基于泛洪的VC生成即可获取坐标。对于第二种情况,针对2D传感器网络开发了一种称为2D-TCTP的预测和跟踪算法,用于连续移动的传感器。根据当前在拓扑域中采样的速度和方向计算移动传感器在未来时间的预测位置。在移动传感器到达时,为预测的未来位置附近的椭圆形检测区域内的传感器组发出警报,以进行通信或检测。使用TPM作为2D指南图,可以实现类似于基于GC的跟踪和预测性能。提出了一种用于TPM生成的简单修改,其中考虑了SVD的第一个主成分中包含的径向信息。此修改改进了在TPM中观察到的边缘处的压缩或折叠,从而改善了跟踪的准确性。 3D-TCTP使用3D球形的检测区域。 3D-TCTP仿真结果类似于2D-TCTP,尽管没有任何3D地理信息,但显示的功能可与基于GC的相同算法相比。

著录项

  • 作者

    Jiang, Yi.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2013
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号