首页> 外文学位 >Laboratory measurement of shear induced fault zone dilatancy, and numerical estimation of its influence on friction constitutive parameters in quasi-undrained scenarios.
【24h】

Laboratory measurement of shear induced fault zone dilatancy, and numerical estimation of its influence on friction constitutive parameters in quasi-undrained scenarios.

机译:在准排水情况下,实验室测量的剪切诱发断层带扩张性,及其对摩擦本构参数影响的数值估计。

获取原文
获取原文并翻译 | 示例

摘要

Chapter 1. Pore fluid pressure plays an important role in the frictional strength and stability of tectonic faults. We report on laboratory measurements of porosity changes associated with transient increases in shear velocity during frictional sliding within simulated fine-grained quartz fault gouge (d50=127 microm). We use our measurements to model transient pore fluid depressurization in response to dilation resulting from step changes in shearing velocity. Dilatant hardening requires undrained response with the transition from drained to undrained loading indexed by the ratio of the rate of porosity change to the rate of drained fluid loss. Undrained loading is favored for high slip rates on low-permeability thick faults with low critical slip distances. Although experimental conditions indicate negligible depressurization due to relatively high system permeability, model results indicate that under feasible, but end-member conditions, shear-induced dilation of fault zones could reduce pore pressures, or correspondingly increase effective normal stresses, by several 10's of MPa. Our results show that transient increases in shearing rate cause fault zone dilation. Such dilation would tend to arrest nucleation of unstable slip. Pore fluid depressurization would exacerbate this effect and could be a significant factor in generation of slow earthquakes, non-volcanic tremors, and related phenomena.;Chapter 2. We use numerical simulations to investigate how fault zone dilatancy and pore fluid decompression influence shear strength behavior in the context of rate and state friction constitutive laws. Dilatant hardening can change the friction response and the effective critical stiffness, Kcr, which delineates the transition from stable to unstable sliding in an ultimately velocity weakening fault zone. We study the frictional shear strength response to velocity step tests and show that in cases where the duration of pore fluid decompression is long compared to the time necessary for friction to evolve (as dictated by the rate-and-state-dependant friction law) both the critical slip distance (DC) and the direct effect (A) are effectively increased. We vary the permeability of the fault zone (k), the dilatancy coefficient (epsilon), and the magnitude of the shearing velocity of the fault zone ( vlp), and also compare results using both the Aging and Slip laws for the evolution of the state variable. We show that over the range from k=10-14 m2 to 10-21 m2 DC is effectively increased from 25 microm to ∼1 cm, and A is increased from 0.15 MPa to over 4 MPa. We also vary epsilon from 10-5--10 -3, and the size of the velocity step from 3 to 1000x and find large increases in the effective values of DC and A, which may lead to inhibition of unstable, stick-slip sliding.;Chapter 3. We describe laboratory experiments on dilatancy and friction constitutive properties of granular fault zones. We focus in particular on the dilatancy coefficient epsilon defined in the context of rate/state friction theory by the change in porosity Delta&phis; resulting from a perturbation in shearing velocity Deltav: epsilon=Delta&phis;/Deltaln( v). We find a strong positive correlation between initial grain-size and epsilon at sigma = 5 MPa but the correlation disappears at higher normal stress, consistent with grain comminution. For Westerly Granite epsilon varies from 2.0x10-4 at 5 MPa to 1.2x10-4 at 30 MPa, while for illite shale and the ODP sample, epsilon is ∼1.4x10-4 under the same conditions. The SAFOD shale showed the highest value for epsilon at all normal stresses, varying from 5.5x10 -4 at 5 MPa to 2.9x10-4 at 30 MPa. Our experiments show that dilation correlates strongly with mean grain-size when sigma is 10 MPa or less, suggesting that immature fault gouge may exhibit greater dilation than mature fault gouge that has undergone significant comminution. Our experiments also show that mineral composition of the gouge may play an important role in fault zone dilatancy, in particular the SAFOD shales exhibit strong dilatancy which may be a factor in explaining the stable sliding typical of the creeping section of the San Andreas Fault. (Abstract shortened by UMI.)
机译:第1章孔隙水压力在构造断裂的摩擦强度和稳定性中起着重要作用。我们报告了在模拟细颗粒石英断层泥(d50 = 127微米)内摩擦滑动过程中与剪切速度的瞬时增加相关的孔隙度变化的实验室测量结果。我们使用测量值来模拟瞬态孔隙流体的降压,以响应剪切速度阶跃变化引起的膨胀。膨胀硬化需要不排水的响应,从排水荷载到不排水荷载的转变以孔隙率变化率与排水液流失率之比来表示。对于低渗透率,低临界滑动距离的厚断层,高排水率有利于不排水载荷。尽管实验条件表明由于相对较高的系统渗透率,降压作用可以忽略不计,但模型结果表明,在可行但端构件条件下,剪切引起的断层扩张可能会降低孔隙压力,或相应地使有效法向应力增加几十个MPa。 。我们的结果表明,剪切速率的瞬时增加会引起断层带扩张。这种扩张将倾向于阻止不稳定滑移的形核。孔隙流体降压将加剧这种影响,并且可能是产生慢地震,非火山震颤和相关现象的重要因素。;第二章。我们使用数值模拟研究断层带扩张性和孔隙流体减压如何影响剪切强度行为。在利率和国家摩擦本构法的背景下。膨胀硬化会改变摩擦响应和有效的临界刚度Kcr,从而确定在最终速度减弱的断层带中从稳定滑动到不稳定滑动的过渡。我们研究了对速度阶跃试验的摩擦剪切强度响应,结果表明,在孔隙流体减压持续时间长于摩擦演化所需时间的情况下(由速率和状态决定的摩擦定律决定),有效地提高了临界滑移距离(DC)和直接作用(A)。我们改变了断层带的渗透率(k),膨胀系数(ε)和断层带的剪切速度(vlp)的大小,并且还使用了老化和滑动定律来比较结果状态变量。我们表明,在从k = 10-14 m2到10-21 m2的范围内,DC有效地从25 microm增加到〜1 cm,而A从0.15 MPa增加到超过4 MPa。我们还将epsilon从10-5--10 -3改变,并将速度步长的大小从3改变为1000x,发现DC和A的有效值大大增加,这可能导致抑制不稳定的粘滑滑动。;第3章。我们描述了颗粒状断层带的扩张性和摩擦本构特性的实验室实验。我们特别关注在孔隙率/状态摩擦理论中通过孔隙率Δφ的变化定义的膨胀系数ε。由剪切速度Deltav的摄动产生:ε=Deltaφ/ Deltaln(v)。我们发现,在sigma = 5 MPa时,初始晶粒尺寸与ε之间有很强的正相关性,但在较高的法向应力下,该相关性消失了,与晶粒粉碎一致。对于西风花岗岩,ε值从5 MPa时的2.0x10-4变化到30 MPa时的1.2x10-4,而对于伊利石页岩和ODP样品,在相同条件下,ε约为1.4x10-4。 SAFOD页岩在所有法向应力下均显示出最高的ε值,范围从5 MPa时的5.5x10 -4到30 MPa时的2.9x10-4。我们的实验表明,当sigma为10 MPa或更低时,膨胀与平均晶粒尺寸密切相关,这表明未成熟断层泥比已经历显着粉碎的成熟断层泥表现出更大的膨胀。我们的实验还表明,该断层泥的矿物成分可能在断层带扩张中起重要作用,特别是SAFOD页岩表现出很强的扩张性,这可能是解释圣安德烈亚斯断层蠕动段典型的稳定滑动的一个因素。 (摘要由UMI缩短。)

著录项

  • 作者

    Samuelson, Jon E.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Geology.;Geophysics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号