首页> 外文学位 >A new dynamic mode for fast imaging in atomic force microscopes.
【24h】

A new dynamic mode for fast imaging in atomic force microscopes.

机译:在原子力显微镜中快速成像的新动态模式。

获取原文
获取原文并翻译 | 示例

摘要

Video-rate imaging and property sensing with nanoscale precision is a subject of immense interest to scientists because it facilitates a deep understanding of processes and sample properties at a molecular level. This dissertation addresses the challenges of high-bandwidth imaging and real-time estimation of sample properties in an atomic force microscope (AFM). Atomic force microscopy has enabled high-resolution nanoscale imaging and manipulation of mechanical, biological and chemical properties of samples at atomic scales. However, current atomic force microscopy techniques suffer from limited imaging bandwidths making them impractical for applications requiring high throughput. A dynamic mode of imaging that achieves high imaging speeds while preserving the properties of high resolution and low forcing on the samples is developed. The proposed imaging scheme is particularly significant with the advent of high-speed nanopositioning stages and electronics. The design is accomplished by model-based force regulation that utilizes the fast cantilever de ection signal instead of its slower derivative signals used in existing methods. The control design uses the vertical and dither (shake) piezo-actuators to make the probe de ection signal track an appropriately designed trajectory. The underlying idea is to treat the nonlinear tip-sample interaction forces as an extraneous disturbance and derive an optimal control design for disturbance rejection with emphasis on robustness. The tracking objective guarantees force regulation between the probe-tip and the sample. Hinfinity stacked sensitivity framework is used to impose the control objectives and the optimal controller is derived through multiobjective optimization. The control design achieves disturbance rejection bandwidths of 0.15 -- 0.20 times the first modal frequency of cantilever used for imaging. Consequently, in the presence of appropriate lateral positioning bandwidth, imaging speeds of the order of 15 -- 20% of cantilever resonance frequency as compared to current speeds (0.5 -- 3%) are made possible. The applications of AFMs go beyond just imaging sample topography. As against conventional imaging methods where the control signal serves as an estimate of the sample surface profile, the proposed imaging mode facilitates estimation of tip-sample interaction potential. The interaction forces are nonlinear functions of the tip-sample distance and their physical properties. Hence, force estimation enables estimation of sample's topography as well as its physical properties. Force models based on the nature of sample and experimental conditions are used to interpret the force estimate data. The choice of model used, in turn, impacts property estimation. A new signal is constructed using error signal from the tracking control problem in order to estimate the tip-sample interaction forces. Thus the goals of force regulation and estimation are separated, increasing the estimation bandwidth beyond the disturbance rejection bandwidth. This allows real-time estimation of sample properties across a scan. Moreover, since the force estimates and sample properties are obtained using the tracking error signal, the role of regulation is only to ensure that the cantilever tip tracks on the sample surface. The understanding of spatial variation of properties across a sample coupled with high-speed imaging will help realize the goal of using AFM as a nano-tool for recording dynamic biological processes.
机译:纳米级精度的视频速率成像和特性感测是科学家极为感兴趣的主题,因为它有助于深入了解分子水平上的过程和样品特性。本文针对原子力显微镜(AFM)的高带宽成像和样品特性的实时估计提出了挑战。原子力显微镜使高分辨率的纳米级成像和原子尺度的样品的机械,生物学和化学性质的操纵成为可能。然而,当前的原子力显微镜技术遭受有限的成像带宽的困扰,这使得它们对于需要高通量的应用是不切实际的。开发了一种动态成像模式,该模式可以实现高成像速度,同时保留高分辨率和对样本的低强迫性。随着高速纳米定位平台和电子设备的出现,提出的成像方案特别重要。该设计通过基于模型的力调节来完成,该力调节利用快速悬臂检测信号而不是现有方法中使用的较慢的导数信号。控制设计使用垂直和抖动(抖动)压电执行器,以使探头检测信号跟踪适当设计的轨迹。基本思想是将非线性尖端样本相互作用力视为外部干扰,并得出针对干扰的最优控制设计,重点是鲁棒性。跟踪物镜保证了探针和样品之间的力调节。 Hinfinity堆栈式灵敏度框架用于施加控制目标,并且通过多目标优化来得出最优控制器。该控制设计实现的干扰抑制带宽为成像所用悬臂的第一模态频率的0.15-0.20倍。因此,在存在适当的横向定位带宽的情况下,与当前速度(0.5-3%)相比,成像速度可以达到悬臂共振频率的15-20%左右。原子力显微镜的应用不仅限于成像样品的形貌。与传统的成像方法不同,在传统的成像方法中,控制信号用作样本表面轮廓的估计值,因此建议的成像模式有助于估计尖端样本相互作用的可能性。相互作用力是尖端样本距离及其物理属性的非线性函数。因此,力估算可以估算样品的形貌及其物理性质。基于样本性质和实验条件的力模型用于解释力估算数据。反过来,所使用模型的选择会影响属性估计。使用来自跟踪控制问题的误差信号构造一个新信号,以便估算尖端样本相互作用力。因此,力调节和估计的目标是分开的,从而将估计带宽增加到干扰抑制带宽之外。这样可以在整个扫描过程中实时估计样品属性。而且,由于力估计和样品特性是使用跟踪误差信号获得的,因此调节的作用仅仅是确保悬臂尖端在样品表面上跟踪。对整个样品特性空间变化的理解以及高速成像将有助于实现使用AFM作为记录动态生物过程的纳米工具的目标。

著录项

  • 作者

    Mohan, Gayathri.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号