首页> 外文学位 >Experimental and numerical investigation into the effects of panel curvature on the high velocity ballistic impact response of aluminum and composite panels.
【24h】

Experimental and numerical investigation into the effects of panel curvature on the high velocity ballistic impact response of aluminum and composite panels.

机译:实验和数值研究面板曲率对铝和复合材料面板高速弹道冲击响应的影响。

获取原文
获取原文并翻译 | 示例

摘要

Determining how a material responds to a ballistic impact is important for designing improved penetration-resistant structures. Historically, the majority of research into the effects of ballistic impact has been for flat geometries. However, in aerospace applications, the surfaces that would most likely be subjected to high velocity impacts, the fuselage and the wing sections, are not flat. A need therefore exists to systematically examine and understand the effect, if any, of panel curvature on the ballistic response of both aluminum and composite panels. For this dissertation, a hybrid combination of experimental testing and numerical modeling which was employed to examine the effects of panel curvature on the ballistic limit, the dynamic panel response, and the impact-induced damage in the target material is discussed. Panels of varying curvature were impacted by ½-inch diameter steel spheres for a range of impact velocities that bracketed the experimentally-determined ballistic limit. AS4-3501-6 graphite-epoxy composite panels with two varying curvatures, a 4.4-inch radius of curvature and a 12-inch radius of curvature, and 2024-T3 aluminum panels with four varying curvatures, a 4.4-inch radius of curvature, an 8-inch radius of curvature, a 12-inch radius of curvature, and an infinite radius of curvature (flat plate), were tested. Non-linear finite element models consistently and reliably modeled the ballistic impact event, for both the flat and the curved panels, when the specified elastic modulus correctly captured the characteristics of the wave propagation behavior for the panel material being modeled. For the composite panels, dynamic deformation measurements and strain-gage-instrumented impact tests indicated that an effective elastic modulus on the order of the tensile modulus of the matrix material was more appropriate than a "rule-of-mixtures" effective modulus. The combined experimental-numerical results also identified a parabolic relationship between the panel curvature and the ballistic limit. More importantly, an optimal panel curvature with respect to maximizing the ballistic limit was shown for both the aluminum and the composite panels. Preliminary results from non-destructive and destructive post-impact evaluations suggest that the severity of impact damage may also vary with panel curvature.*; *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: QuickTime; Windows MediaPlayer or RealPlayer.
机译:确定材料对弹道冲击的响应方式对于设计改进的抗穿透结构很重要。从历史上看,大多数关于弹道撞击影响的研究都是针对平坦的几何形状。但是,在航空航天应用中,最有可能受到高速冲击的表面,机身和机翼部分并不是平坦的。因此,需要系统地检查和理解板曲率对铝板和复合板的弹道响应的影响(如果有的话)。为此,本文讨论了将实验测试与数值模拟相结合的方法,以研究面板曲率对弹道极限,动态面板响应以及目标材料中冲击诱导损伤的影响。曲率变化的面板受到直径为½英寸的钢球的冲击,冲击速度范围达到了实验确定的弹道极限。 AS4-3501-6石墨-环氧树脂复合板具有两种不同的曲率,曲率半径为4.4英寸,曲率半径为12英寸; 2024-T3铝塑板具有四种不同的曲率,其曲率半径为4.4英寸,测试了8英寸的曲率半径,12英寸的曲率半径和无限的曲率半径(平板)。当指定的弹性模量正确地捕获了要建模的面板材料的波传播行为的特征时,非线性有限元模型就可以对平板和曲面面板的弹道冲击事件进行一致且可靠的建模。对于复合板,动态变形测量和应变计冲击试验表明,与“混合规则”有效模量相比,基体材料拉伸模量级的有效弹性模量更合适。组合的实验数字结果还确定了面板曲率和弹道极限之间的抛物线关系。更重要的是,铝板和复合板均显示了相对于最大化弹道极限的最佳板曲率。非破坏性和破坏性碰撞后评估的初步结果表明,冲击破坏的严重性也可能随面板曲率而变化。 *本论文是复合文件(作为论文的一部分,包含纸质副本和CD)。该CD需要满足以下系统要求:QuickTime; Windows MediaPlayer或RealPlayer。

著录项

  • 作者

    Stargel, David Scott.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号