首页> 外文学位 >Nanostructured surfaces using thermal nanoimprint lithography: Applications in thin membrane technology, piezoelectric energy harvesting and tactile pressure sensing.
【24h】

Nanostructured surfaces using thermal nanoimprint lithography: Applications in thin membrane technology, piezoelectric energy harvesting and tactile pressure sensing.

机译:使用热纳米压印光刻技术的纳米结构表面:在薄膜技术,压电能量收集和触觉压力感测中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Nanoimprint lithography (NIL) is emerging as a viable contender for fabrication of large-scale arrays of 5-500 nm features. The work presented in this dissertation aims to leverage the advantages of NIL for realization of novel Nano Electro Mechanical Systems (NEMS). The first application is a nanoporous membrane blood oxygenator system. A fabrication process for realization of thin nanoporous membranes using thermal nanoimprint lithography is presented. Suspended silicon nitride membranes were fabricated by Low-Pressure Chemical Vapor Deposition (LPCVD) in conjunction with a potassium hydroxide-based bulk micromachining process. Nanoscale features were imprinted into a commercially available thermoplastic polymer resist using a pre-fabricated silicon mold. The pattern was reversed and transferred to a thin aluminum oxide layer by means of a novel two stage lift-off technique. The patterned aluminum oxide was used as an etch mask in a CHF3/He based reactive ion etch process to transfer the pattern to silicon nitride. Highly directional etch profiles with near vertical sidewalls and excellent Si3N4/Al2O3 etch selectivity was observed. One-micrometer-thick porous membranes with varying dimensions of 250x250 microm2 to 450x450 microm 2 and pore diameter of 400 nm have been engineered and evaluated. Results indicate that the membranes have consistent nanopore dimensions and precisely defined porosity, which makes them ideal as gas exchange interfaces in blood oxygenation systems as well as other applications such as dialysis. Additionally, bulk -- micromachined microfluidic channels have been developed for uniform, laminar blood flow with minimal cell trauma. NIL has been used for ordered growth of crystalline nanostructures for sensing and energy harvesting. Highly ordered arrays of crystalline ZnO nanorods have been fabricated using a polymer template patterned by thermal nanoimprint lithography, in conjunction with a low temperature hydrothermal growth process. Zinc Oxide nanorods were characterized to determine their piezoelectric response to an applied force. An atomic force microscope operating in the force spectroscopy mode was used to apply forces in the nN range. In contrast to previously published reports using lateral tip motion (C-AFM), the action of the tip in our experiment was perpendicular to the plane of the nanorods, allowing a more defined tip -- nanorod interaction. Voltage pulses of a positive polarity with amplitude ranging from hundreds of microV to few mV were observed. The tip -- nanorod interaction was modeled using commercial solid modeling software and was simulated using finite element analysis. Comparison of the results yielded useful observations for design of piezoelectric energy harvesters/sensors using ZnO nanorods. A nanoelectromechanical (NEMS) piezoelectric energy harvester using crystalline ZnO nanowires is developed. The device converts ambient vibrations into usable electrical energy for low power sensor applications. This is accomplished by mechanical excitation of an ordered ZnO nanorod array using a suspended bulk micromachined proof mass. The device is capable of generating up to 14.2 mV single polarity voltage under an input vibration of amplitude 1 g (9.8 m/s2) at a frequency of 1.10 kHz. Finally, large area arrays of ordered ZnO piezoelectric nanorods are developed on flexible substrates towards self-powered sensing skin for robots. The sensor array is designed to measure tactile pressure in the 10 kPa-- 200 kPa range with 1 mm spatial resolution. A voltage signal in the range of few mV is observed in response to applied pressure. This work represents the first demonstration of perfectly ordered, vertically aligned, crystalline ZnO nanorod arrays, fabricated in polyimides to ensure conformity to non-planar surfaces such as a robot's. The sensors are self-packaged using a flexible substrate and a superstrate. In addition to the novelty of the sensor structure itself, the work includes an innovative low-temperature hydrothermal ZnO growth process compatible with the temperature restrictions imposed by the polyimide substrate/superstrate.
机译:纳米压印光刻技术(NIL)成为制造5-500 nm特征大规模阵列的可行竞争者。本文的工作旨在利用NIL的优势来实现新型的纳米电子机械系统(NEMS)。第一个应用是纳米多孔膜血液充氧器系统。提出了利用热纳米压印光刻技术实现纳米多孔薄膜的制造工艺。悬浮的氮化硅膜是通过低压化学气相沉积(LPCVD)结合基于氢氧化钾的本体微机械加工工艺制成的。使用预制的硅模具将纳米级特征压印到可商购的热塑性聚合物抗蚀剂中。通过新颖的两阶段剥离技术将图案反转并转移到氧化铝薄层上。图案化的氧化铝在基于CHF3 / He的反应离子蚀刻工艺中用作蚀刻掩模,以将图案转移到氮化硅上。观察到具有接近垂直的侧壁和极好的Si3N4 / Al2O3蚀刻选择性的高方向蚀刻轮廓。设计并评估了尺寸为250x250 microm2至450x450 microm 2且孔径为400 nm的厚度为1微米的多孔膜。结果表明,该膜具有一致的纳米孔尺寸和精确定义的孔隙率,这使其成为血液氧合系统以及透析等其他应用中的气体交换界面的理想选择。此外,还开发了散装-微加工的微流控通道,以实现均匀的层流血流并将细胞损伤降至最低。 NIL已用于晶体纳米结构的有序生长,以进行传感和能量收集。使用通过热纳米压印光刻图案化的聚合物模板,结合低温水热生长工艺,制造了高度有序的晶体ZnO纳米棒阵列。表征氧化锌纳米棒以确定其对施加力的压电响应。使用以力谱模式操作的原子力显微镜来施加nN范围内的力。与先前发布的使用侧向尖端运动(C-AFM)的报告相比,我们实验中尖端的作用垂直于纳米棒的平面,从而实现了更明确的尖端-纳米棒相互作用。观察到具有范围从几百微伏到几毫伏的幅度的正极性电压脉冲。尖端-纳米棒相互作用使用商业实体建模软件进行建模,并使用有限元分析进行模拟。结果的比较为使用ZnO纳米棒设计压电能量收集器/传感器提供了有用的观察结果。开发了一种使用晶体ZnO纳米线的纳米机电(NEMS)压电能量采集器。该设备将环境振动转换为可用电能,以用于低功率传感器应用。这是通过使用悬浮的块状微加工证明质量块对有序ZnO纳米棒阵列进行机械激发来实现的。该器件能够在振幅为1 g(9.8 m / s2)的输入振动下以1.10 kHz的频率产生高达14.2 mV的单极性电压。最终,在柔性基板上朝着机器人的自供电传感皮肤开发了大面积的有序ZnO压电纳米棒阵列。传感器阵列旨在以1 mm的空间分辨率测量10 kPa-- 200 kPa范围内的触觉压力。响应于施加的压力,观察到在几mV范围内的电压信号。这项工作代表了用聚酰亚胺制造的,确保有序排列,垂直排列的结晶ZnO纳米棒阵列的首次展示,以确保与机器人等非平面表面的一致性。传感器使用柔性基板和上基板自包装。除了传感器结构本身的新颖性之外,这项工作还包括创新的低温水热ZnO生长工艺,该工艺与聚酰亚胺基板/上基板施加的温度限制兼容。

著录项

  • 作者

    Nabar, Bhargav Pradip.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Nanotechnology.;Engineering General.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号