首页> 外文学位 >Development of an Experimentally Validated Finite Element Model for Spark Plasma Sintering of High Temperature Ceramics.
【24h】

Development of an Experimentally Validated Finite Element Model for Spark Plasma Sintering of High Temperature Ceramics.

机译:实验验证的高温陶瓷火花等离子体烧结有限元模型的开发。

获取原文
获取原文并翻译 | 示例

摘要

Spark plasma sintering (SPS) is a powder consolidation technique used to rapidly densify a variety of material systems. SPS is capable of precisely controlling material microstructures and achieving non-equilibrium phases due to rapid heating and cooling rates through the simultaneous application of pressure and direct current. Due to these characteristics, SPS is an ideal processing technique for high temperature ceramics which require processing at temperatures greater than 1500°C. Due to the desirable properties obtained on small diameter materials processed by SPS, larger and more complex geometries are desired while maintaining sample microstructures.;In order to accurately scale ceramics produced by SPS, a finite element model must be developed that can be used as a predictive tool. My research focuses on developing a finite element model for the spark plasma sintering furnace at the University of Arizona and validating modeled results using experimentally obtained data. Electrical and thermal conductivity as functions of temperature vary widely among different grades of commercially available electrode grade graphite at constant density. Modeled material properties are optimized in order to calibrate modeled results to experimentally obtained data (i.e. measured current, voltage, and temperature distributions). Sensitivity analysis is performed on the model to better understand model physics and predictions.;A calibrated model is presented for 20mm ZrB2 and Si 3N4 discs. Sample temperature gradients are experimentally confirmed using grain size and beta-Si3N4 phase composition. The model is used to investigate scale up from 20mm to 30mm discs and 30mm rings as well as effects of processing conditions on beta-Si3N 4 content.
机译:火花等离子体烧结(SPS)是一种粉末固结技术,用于快速致密化各种材料系统。 SPS能够通过同时施加压力和直流电而快速加热和冷却,从而精确控制材料的微观结构并实现非平衡相。由于这些特性,SPS是要求在高于1500°C的温度下进行加工的高温陶瓷的理想加工技术。由于通过SPS处理的小直径材料获得了理想的性能,因此在保持样品微观结构的同时还需要更大,更复杂的几何形状。;为了精确缩放由SPS生产的陶瓷,必须开发一个有限元模型来用作预测工具。我的研究重点是为亚利桑那大学的火花等离子体烧结炉开发有限元模型,并使用实验获得的数据验证建模结果。在温度恒定的情况下,不同等级的市售电极级石墨之间的电导率和导热率随温度的变化很大。为了使建模结果校准为实验获得的数据(即测得的电流,电压和温度分布),应优化建模材料的性能。对模型进行了敏感性分析,以更好地理解模型的物理性质和预测结果。提出了针对20mm ZrB2和Si 3N4圆盘的校准模型。使用晶粒尺寸和β-Si3N4相组成通过实验确定样品温度梯度。该模型用于调查从20mm到30mm的圆盘和30mm的环的放大比例,以及加工条件对β-Si3N4含量的影响。

著录项

  • 作者

    Neff, Paul K.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Engineering.;Materials science.
  • 学位 M.S.
  • 年度 2016
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号