首页> 外文学位 >Development of high efficiency bulk heterojunction organic solar cell and hydrogen fuel cell.
【24h】

Development of high efficiency bulk heterojunction organic solar cell and hydrogen fuel cell.

机译:高效体异质结有机太阳能电池和氢燃料电池的开发。

获取原文
获取原文并翻译 | 示例

摘要

With the urgency to conserve finite fossil fuels and control the carbon release within the framework of Kyoto agreement regarding global warming effect, the society shows great interest for the renewable energy. Varieties of energy generation devices using renewable energy sources are then created. However, most of the technologies are still at early stage and the applications of these devices are limited due to their relatively low efficiency and high cost. For bulk heterojunction (BHJ) solar cell, the disordered morphology within the active layer for conventional BHJ solar cell construction significantly prevents the free movement of charge carriers, leading to low short circuit current and power conversion efficiency. In this thesis, a novel approach that introduces polystyrene that organizes the poly(3-hexylthiophene) (P3HT) into columnar phases decorated by [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at the interface is presented. This structure represents a realization of an idealized morphology of an organic solar cell, in which, both exiciton dissociation and the carrier transport are optimized leading to increased power conversion efficiency. This feasibility of this idea was first tested by Molecular Dynamics (MD) simulations and then experimentally realized by optimization of ratios between P3HT, PS and PCBM. Columnar structure inside the polymer blends thin film was observed under TEM cross section measurement and the power conversion efficiency was indeed increased by 30% by constructing this specific structure inside active layer of BHJ solar cell. For polymer electrolyte membrane (PEM) fuel cell, the utilization of expensive platinum (Pt) catalysts limits the cost efficiency while the poisoning effect of Pt catalyst by the impurities in reforming hydrogen gas shortens the lifetime of the fuel cell. In this thesis, thiol-stabilized gold nanoparticles are synthesized through classic two-phase method and a monolayer of as prepared gold nanoparticles is deposited onto the surface of Nafion membrane by Langmuir-Blodgett (LB) trough. X-ray reflectivity (XRR) determines the thickness of the monolayer and the fuel cell performance results show that the monolayer deposition of gold nanoparticles could not only enhance the output power of PEM fuel cells significantly (up to 80%) but also increase the tolerance to the impurities in hydrogen gas, which is probably due to the active perimeter sites at the interface of gold and NafionR membrane support proven by output gas analysis. Further research shows that the activity of this deposited layer is a strong function of surface pressure that's applied for nanoparticles deposition, which indicates the important of direct contact between nanoparticles and membrane support. Meanwhile, similar construction of GO or rGO monolayer onto membrane surface can also greatly increase the output power of PEM fuel cells with even lower cost than the application of gold nanoparticles, which is mainly due to the enhanced ion conductivity for GO deposition and enhanced electron conductivity for rGO deposition.
机译:在京都议定书关于全球变暖影响的框架内,迫切需要节约有限的化石燃料并控制碳的释放,社会对可再生能源表现出极大的兴趣。然后产生了使用可再生能源的各种能量产生装置。然而,大多数技术仍处于早期阶段,并且由于其相对较低的效率和较高的成本而限制了它们的应用。对于块状异质结(BHJ)太阳能电池,常规BHJ太阳能电池结构有源层内的无序形态会显着阻止电荷载流子的自由移动,从而导致短路电流和功率转换效率低。本文提出了一种新方法,该方法引入了聚苯乙烯,该聚苯乙烯在界面处将聚(3-己基噻吩)(P3HT)组织到由[6,6]-苯基C61-丁酸甲酯(PCBM)装饰的柱状相中。这种结构代表了有机太阳能电池理想形态的实现,其中激子解离和载流子传输都得到了优化,从而提高了功率转换效率。这种想法的可行性首先通过分子动力学(MD)模拟进行了测试,然后通过优化P3HT,PS和PCBM之间的比例来实验实现。在TEM截面测量下观察到聚合物共混物薄膜内部的柱状结构,并且通过在BHJ太阳能电池的活性层内部构建该特定结构,功率转换效率确实提高了30%。对于聚合物电解质膜(PEM)燃料电池,昂贵的铂(Pt)催化剂的使用限制了成本效率,而杂质在重整氢气中对Pt催化剂的中毒作用缩短了燃料电池的寿命。本文采用经典的两相法合成了硫醇稳定的金纳米颗粒,并通过Langmuir-Blodgett(LB)槽将单层制备的金纳米颗粒沉积在Nafion膜表面。 X射线反射率(XRR)决定了单层的厚度,燃料电池性能结果表明,金纳米颗粒的单层沉积不仅可以显着提高PEM燃料电池的输出功率(高达80%),而且可以提高耐受性氢气中的杂质,这可能是由于输出气体分析证明了金和NafionR膜载体界面上的活性周边部位。进一步的研究表明,该沉积层的活性是施加于纳米颗粒沉积的表面压力的强函数,这表明了纳米颗粒与膜载体之间直接接触的重要性。同时,在膜表面上类似构造GO或rGO单层也可以大大提高PEM燃料电池的输出功率,而其成本甚至比金纳米颗粒的应用还要低,这主要是由于提高了GO沉积的离子电导率和电子电导率用于rGO沉积。

著录项

  • 作者

    Pan, Cheng.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号