首页> 外文学位 >Grid Integration of Distributed Energy Storage Devices in DC and AC Distribution Systems.
【24h】

Grid Integration of Distributed Energy Storage Devices in DC and AC Distribution Systems.

机译:直流和交流配电系统中分布式储能设备的电网集成。

获取原文
获取原文并翻译 | 示例

摘要

Energy storage plays a vital role in solving many challenges experienced by the power system, such as the integration of renewable energy sources, load leveling, power quality control, etc. Energy storage systems suitable for distributed storage applications typically produce a DC voltage. Thus the focus of this dissertation is the efficient control and integration of DC energy storage devices in DC and AC distribution systems.;DC distribution systems are still in their infancy; however, a number of applications are ideally suited for DC power distribution, including data centers, fast charging stations for electric vehicles, more electric ships and aircrafts, etc. Among these applications, the fast charging station is of particular interest because of the widespread adoption of plug-in hybrid electric vehicles (PHEV) and pure electric vehicles (EV). A network of gas-station-equivalent fast charging stations is of great importance for solving the so-called "range anxiety" issue. As with gas stations, it is expected that multiple chargers will be co-located to form a charging station. This layout allows for the fast charging station to make use of a common AC/DC rectifier stage. After studying the power demand of the fast charging station, the power delivery architecture is proposed with DC power distribution and energy storage integration. With the energy storage system to provide peak power, the AC/DC frontend for the charging station can be sized based on the average power demand which is substantially lower than the peak power demand.;Following the design of the fast charging station, the AC/DC frontend plays a vital role in the sense that it provides the DC bus that powers all the chargers. It is justified that the 12-pulse diode rectifier is a suitable choice for the AC/DC frontend because of its high reliability and low cost. However, the 12-pulse diode rectifier suffers from relatively high level of current harmonics on the AC side. Traditional way to mitigate harmonic issues is to add separate filters (active or passive). In this dissertation, a novel approach is proposed to use the same DC/DC converter to integrate energy storage while simultaneously improving the power quality on both sides of 12-pulse diode rectifier. The first implementation of this approach utilizes the DC/DC converter to shape the DC side current drawn from the rectifier and thus indirectly eliminate AC side current harmonics. During this study, a new way to design the LC filters of the 12-pulse diode rectifier is developed, which results in substantially lower value of inductance and capacitance for the LC filter and lower harmonics on the AC side. Based on this result, the second implementation utilizes the DC/DC converter to inject virtual resistance into the LC filter and thus shape the rectifier output current. This implementation provides even better results in terms of harmonics elimination and minimizing VA rating of the DC/DC converter. It also provides the third functionality of the DC/DC converter, which is compensating the voltage ripple of the DC bus. Experiment and simulation results are given to verify all the presented statements.;For energy storage integration in AC distribution system, the goal is to find an efficient way to integrate dissimilar batteries into the grid. Since these batteries can be very different, they cannot be directly connected together to form a high voltage high capacity battery pack. The approach is to design DC/AC power converter that interface with each of the low voltage battery modules and form a module that includes energy storage device and power converter. A number of these modules can be linked together on the AC side of the power converter, to reach the required AC output voltage and directly interface with the grid. This approach holds the promise of higher system level efficiency and simplicity than the two-stage solution typically used. The well-known H-Bridge topology is used for the DC/AC power conversion. When the H-Bridges are cascaded together, the independent control of each H-Bridge becomes challenging because all of them are linked together. Existing control strategies all need a central controller to directly control all the H-Bridges or communicate with local controllers located within the H-Bridge modules, which limits the modularity of the system. In this dissertation, a new control strategy for cascaded H-Bridges is proposed with no central controller. The control strategy for each H-Bridge is completely implemented in the local controller and there is no communication between these local controllers. Experiment results verified the effectiveness of this control strategy and a small scale community energy storage system (CES) is built and integrated into the Future Renewable Electric Energy Distribution and Management (FREEDM) system.
机译:能量存储在解决电力系统所面临的许多挑战中扮演着至关重要的角色,例如可再生能源的集成,负载均衡,电源质量控制等。适合于分布式存储应用的能量存储系统通常会产生直流电压。因此,本文的重点是对直流和交流配电系统中直流储能装置的有效控制和集成。直流配电系统仍处于起步阶段。但是,许多应用都非常适合DC配电,包括数据中心,电动汽车的快速充电站,更多的电动船和飞机等。在这些应用中,由于被广泛采用,快速充电站特别受关注插电式混合动力汽车(PHEV)和纯电动汽车(EV)。相当于加油站的快速充电站网络对于解决所谓的“范围焦虑”问题非常重要。与加油站一样,可以预期将多个充电器并置在一起以形成一个充电站。这种布局允许快速充电站使用通用的AC / DC整流器级。在研究了快速充电站的电力需求之后,提出了一种具有直流配电和能量存储集成的电力输送架构。通过储能系统提供峰值功率,可以根据平均功率需求来确定充电站的AC / DC前端大小,该平均功率需求明显低于峰值功率需求。;在快速充电站的设计之后,AC / DC前端在提供为所有充电器供电的DC总线方面起着至关重要的作用。可以肯定的是,12脉冲二极管整流器因其高可靠性和低成本而成为AC / DC前端的合适选择。但是,12脉冲二极管整流器在AC端遭受相对较高水平的电流谐波。减轻谐波问题的传统方法是添加单独的滤波器(有源或无源)。本文提出了一种使用同一个DC / DC转换器来集成能量存储的新方法,同时提高了12脉冲二极管整流器两侧的电能质量。此方法的第一种实现方式是利用DC / DC转换器对从整流器汲取的DC侧电流进行整形,从而间接消除AC侧电流谐波。在此研究过程中,开发了一种设计12脉冲二极管整流器LC滤波器的新方法,从而大大降低了LC滤波器的电感和电容值,并降低了交流侧的谐波。基于此结果,第二种实现方式利用DC / DC转换器将虚拟电阻注入LC滤波器,从而调整整流器输出电流。在消除谐波和最小化DC / DC转换器的VA额定值方面,该实现方案提供了更好的结果。它还提供了DC / DC转换器的第三种功能,该功能可补偿DC总线的电压纹波。给出了实验和仿真结果,以验证所提出的所有陈述。对于交流配电系统中的储能集成,目标是找到一种将异种电池集成到电网中的有效方法。由于这些电池可能有很大差异,因此无法将它们直接连接在一起以形成高压大容量电池组。该方法是设计与每个低压电池模块接口的DC / AC电源转换器,并形成一个包含能量存储设备和电源转换器的模块。这些模块中的许多模块可以在电源转换器的交流侧链接在一起,以达到所需的交流输出电压,并直接与电网连接。与通常使用的两阶段解决方案相比,这种方法有望带来更高的系统级效率和简化性。众所周知的H桥拓扑用于DC / AC电源转换。当H桥级联在一起时,每个H桥的独立控制变得很困难,因为它们都链接在一起。现有的控制策略都需要中央控制器来直接控制所有H桥或与位于H桥模块内的本地控制器通信,这限制了系统的模块化。本文提出了一种不带中央控制器的级联H桥控制策略。每个H桥的控制策略完全在本地控制器中实现,并且这些本地控制器之间没有通信。实验结果证明了该控制策略的有效性,并建立了小型社区能源存储系统(CES)并将其集成到未来可再生能源分配和管理(FREEDM)系统中。

著录项

  • 作者

    Bai, Sanzhong.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号