首页> 外文学位 >A novel algorithm for the reconstruction of an entrance beam fluence from treatment exit patient portal dosimetry images.
【24h】

A novel algorithm for the reconstruction of an entrance beam fluence from treatment exit patient portal dosimetry images.

机译:一种新的算法,用于根据治疗出口患者门剂量剂量图像重建入射光束通量。

获取原文
获取原文并翻译 | 示例

摘要

The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. Most methods which have found clinical acceptance work by use of a proxy dosimeter, e.g.: glass rods, using radiophotoluminescence; thermoluminescent dosimeters (TLD), typically CaF or LiF; Metal Oxide Silicon Field Effect Transistor (MOSFET) dosimeters, using threshold voltage shift; Optically Stimulated Luminescent Dosimeters (OSLD), composed of Carbon doped Aluminum Dioxide crystals; RadioChromic film, using leuko-dye polymers; Silicon Diode dosimeters, typically p-type; and ion chambers. More recent methods employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit beam fluence determination. The difficulty with the proxy in vivo dosimetery methods is the requirement that they be placed at the particular location where the dose is to be determined. This precludes measurements across the entire patient volume. These methods are best suited where the dose at a particular location is required. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. A final approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials. Additionally, this method has been extended to determine in vivo dosimetry. The method developed here employs the use of EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary beam fluence on the patient. This primary fluence may then be employed to determine dose through the entire patient volume. The method requires patient specific information, including a CT for deconvolution/dose reconstruction. With the large-scale adoption of Cone Beam CT (CBCT) systems on modern linear accelerators, a treatment time CT is readily available for use in this deconvolution and in dose representation.
机译:自从该领域的发展以来,确定接受放射治疗的患者的体内剂量测定法的问题已经成为关注的领域。多数已通过使用替代剂量计获得临床认可的方法,例如:使用放射光致发光的玻璃棒;热发光剂量计(TLD),通常为CaF或LiF;使用阈值电压漂移的金属氧化物硅场效应晶体管(MOSFET)剂量计;由碳掺杂的氧化铝晶体组成的光激发发光剂量计(OSLD);使用铬染料聚合物的RadioChromic胶片;硅二极管剂量计,通常为p型;和离子室。最近的方法采用电子门户图像设备(EPID)或剂量计阵列来确定入射或出射束通量。替代体内剂量测定法的困难在于要求将它们放置在要确定剂量的特定位置。这排除了在整个患者体内进行测量的可能性。这些方法最适合需要特定位置剂量的地方。体内剂量测定的最新方法是利用检测器阵列和重建技术来确定整个患者体内的剂量。一种方法使用位于患者上游的离子室阵列。这需要特殊的硬件设备,并在光束路径中放置一个额外的衰减器,这可能是不希望的。最后一种方法是使用现有的EPID(这是大多数现代线性加速器的一部分)来使用治疗束对患者进行成像。存在使用一系列加权指数去卷积EPID的检测器功能的方法。另外,该方法已经扩展到确定体内剂量测定法。此处开发的方法利用EPID图像和迭代解卷积算法来重建撞击在患者身上的主光束通量。然后可以使用这种主要能量密度来确定整个患者体积的剂量。该方法需要患者特定的信息,包括用于解卷积/剂量重建的CT。随着现代线性加速器上大规模采用锥束CT(CBCT)系统,治疗时间CT可以轻松用于这种反卷积和剂量表示。

著录项

  • 作者

    Sperling, Nicholas Niven.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Physics General.;Health Sciences Radiology.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 244 p.
  • 总页数 244
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号