首页> 外文学位 >Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes.
【24h】

Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes.

机译:基于传感器的监测和超精密制造过程中的表面形态检查。

获取原文
获取原文并翻译 | 示例

摘要

This research proposes approaches for monitoring and inspection of surface morphology with respect to two ultraprecision/nanomanufacturing processes, namely, ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The methods illustrated in this dissertation are motivated from the compelling need for in situ process monitoring in nanomanufacturing and invoke concepts from diverse scientific backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph theory. From an engineering perspective, this work has the following contributions: 1. A combined neural network and Bayesian learning approach for early detection of UPM process anomalies by integrating data from multiple heterogeneous in situ sensors (force, vibration, and acoustic emission) is developed. The approach captures process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their inception and is therefore valuable for minimizing yield losses. 2. CMP process dynamics are mathematically represented using a deterministic multi-scale hierarchical nonlinear differential equation model. This process-machine inter-action (PMI) model is evocative of the various physio-mechanical aspects in CMP and closely emulates experimentally acquired vibration signal patterns, including complex nonlinear dynamics manifest in the process. By combining the PMI model predictions with features gathered from wirelessly acquired CMP vibration signal patterns, CMP process anomalies, such as pad wear, and drifts in polishing were identified in their nascent stage with high fidelity (R2 ~ 75%). 3. An algebraic graph theoretic approach for quantifying nano-surface morphology from optical micrograph images is developed. The approach enables a parsimonious representation of the topological relationships between heterogeneous nano-surface fea-tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, and Laplacian matrices. Topological invariant measures (e.g., Fiedler number, Kirchoff index) extracted from these matrices are shown to be sensitive to evolving nano-surface morphology. For instance, we observed that prominent nanoscale morphological changes on CMP processed Cu wafers, although discernible visually, could not be tractably quantified using statistical metrology parameters, such as arithmetic average roughness (Sa), root mean square roughness (Sq), etc. In contrast, CMP induced nanoscale surface variations were captured on invoking graph theoretic topological invariants. Consequently, the graph theoretic approach can enable timely, non-contact, and in situ metrology of semiconductor wafers by obviating the need for reticent profile mapping techniques (e.g., AFM, SEM, etc.), and thereby prevent the propagation of yield losses over long production runs.
机译:这项研究提出了有关两个超精密/纳米制造过程,即超精密加工(UPM)和化学机械平面化(CMP)的表面形态监测和检查方法。本文所阐述的方法是基于对纳米制造中原位过程监控的迫切需求,并引用了来自不同科学背景的概念,例如人工神经网络,贝叶斯学习和代数图论。从工程的角度来看,这项工作具有以下贡献:1.开发了一种组合的神经网络和贝叶斯学习方法,用于通过集成来自多个异构传感器(力,振动和声发射)的数据来早期检测UPM过程异常。该方法捕获了铝制6061光盘在制造之初15毫秒内UPM中的工艺偏差,因此对于最小化良率损失非常有价值。 2.使用确定性的多尺度分层非线性微分方程模型在数学上表示CMP过程动力学。该过程机器交互(PMI)模型唤起了CMP中的各种物理机械方面,并紧密模拟了实验获得的振动信号模式,包括过程中表现出的复杂非线性动力学。通过将PMI模型预测与从无线获取的CMP振动信号模式中收集的特征相结合,可以在其新生阶段以高保真度(R2〜75%)识别出CMP工艺异常,例如垫磨损和抛光漂移。 3.提出了一种从光学显微图像量化纳米表面形态的代数图理论方法。该方法可以简化表示异质纳米表面特征之间的拓扑关系,这些特征包含在图论实体中,即相似度,度数和拉普拉斯矩阵。从这些矩阵中提取的拓扑不变度量(例如Fiedler数,基尔霍夫指数)被证明对不断发展的纳米表面形态敏感。例如,我们观察到,尽管用肉眼可以辨认出,但CMP处理的Cu晶片上明显的纳米级形态变化,虽然不能使用统计计量参数(例如算术平均粗糙度(Sa),均方根粗糙度(Sq)等)进行精确量化。相比之下,CMP诱导的纳米级表面变化是通过调用图论拓扑拓扑变量捕获的。因此,图形理论方法可以避免对沉默的轮廓映射技术(例如AFM,SEM等)的需要,从而能够实现及时,非接触式和原位的半导体晶圆计量,从而避免了良率损失的扩散生产周期长。

著录项

  • 作者

    Rao, Prahalad Krishna.;

  • 作者单位

    Oklahoma State University.;

  • 授予单位 Oklahoma State University.;
  • 学科 Engineering Industrial.;Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 437 p.
  • 总页数 437
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号