首页> 外文学位 >Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory.
【24h】

Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory.

机译:DNA包覆颗粒的自组装:实验,模拟和理论。

获取原文
获取原文并翻译 | 示例

摘要

The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly.;We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles.;Subsequently, the controlled mixing of complementary ssDNA functionality on individual particles ('multi-flavoring') as opposed to functionalization of particles with the same type of ssDNA ('uni-flavoring') is explored as a possible design handle for tuning interparticle interactions and, thereby, accessing diverse structures. We employ a combination of simulations, theory, and experimental validation toward establishing 'multi-flavoring' as a rational design strategy. Firstly, MD simulations are carried out using effective pair potentials to describe interparticle interactions that are representative of different degrees of ssDNA 'multi-flavoring'. These simulations reveal the template-free assembly of a diversity of 2D crystal polymorphs that is apparently tunable by controlling the relative attractive strengths between like and unlike functionalized particles. The resulting phase diagrams predict conditions (i.e., strengths of relative interparticle interactions) for obtaining crystalline phases with lattice symmetries ranging among square, alternating string hexagonal, random hexagonal, rhombic, honeycomb, and even kagome.;Finally, these model findings are translated to experiments, in which binary microparticles are decorated with a tailored mixture of two different complementary ssDNA strands as a straight-forward means to realize tunable particle interactions. Guided by simple statistical mechanics and the detailed MD simulations, 'multi-flavoring' and control of solution phase particle stoichiometry resulted in experimental realization of structurally diverse 2D microparticle assemblies consistent with predictions, such as square, pentagonal and hexagonal lattices (honeycomb, kagome). The combined simulation, theory, and experimental findings reveal how control of interparticle interactions via DNA-functionalized particle "multi-flavoring" can lead to an even wider range of accessible colloidal crystal structures. The 2D experiments coupled with the model predictions may be used to provide new fundamental insight into nano- or microparticle assembly in three dimensions.
机译:具有合理的复杂性,功能,组成和结构的自下而上的材料体系结构组装是合理材料设计中长期追求的目标。一种有前途的方法旨在利用DNA杂交的可编程性和特异性,以便通过部分调整粒子间的相互作用来指导寡核苷酸功能化的纳米粒子和微米粒子的组装。由于在光子学,等离激元学和催化以及可能在许多其他领域的新兴应用,DNA可编程组装成三维有序结构引起了广泛的研究兴趣。另一方面,在DNA介导的相互作用的合理设计以产生有用的二维结构(例如结构化膜)方面的进展相当缓慢。在本文中,我们通过设计和利用DNA可编程的颗粒间相互作用,建立了设计2D晶体排列多样性的策略。我们采用模拟,理论和实验相结合的方法来预测和确认2D结构多样性的可及性,从而为建立2D DNA介导的颗粒组装的合理方法而努力。微米大小的二氧化硅颗粒,通过两步反应共价连接单链DNA。随后,我们通过控制常用非离子表面活性剂的浓度,阐明了DNA介导的组装的敏感性和最终可控制性-具体地说是从分散的单重态颗粒到聚集或组装的结构的熔融转变。我们将观察到的可调性与这些系统中的临界胶束温度的表观耦合联系起来。同样,正方形和六角形2D有序颗粒排列均显示在基于预先建立的熔解曲线定义的适当退火条件下从无序聚集体演变而来;随后,单个颗粒上互补ssDNA功能的受控混合(``多味'')与使用相同类型的ssDNA进行粒子功能化(“单味”)相反,人们将其作为可能的设计方法来调整粒子间的相互作用,从而获得各种结构。我们采用模拟,理论和实验验证相结合的方法来建立“多种风味”作为合理的设计策略。首先,使用有效的配对电位来进行MD模拟,以描述代表不同ssDNA“多味”程度的粒子间相互作用。这些模拟揭示了无2D晶体多晶型物的无模板组装,通过控制相似和不同官能化颗粒之间的相对吸引强度,显然可以调节它们。最终的相图预测了获得晶格对称的晶相的条件(即相对的粒子间相互作用的强度),晶格对称性介于正方形,交替的六角形,随机的六角形,菱形,蜂窝状甚至是kagome之间。最后,将这些模型发现转化为实验中,将二元微粒用两条不同的互补ssDNA链的量身定制的混合物修饰,以此作为实现可调粒子相互作用的直接方法。在简单的统计力学和详细的MD模拟的指导下,“多味剂”和溶液相颗粒化学计量的控制导致实验实现了与预测相符的结构多样的2D微粒组件,例如正方形,五边形和六边形格子(蜂窝,kagome) 。结合的模拟,理论和实验发现揭示了通过DNA功能化的颗粒“多味”控制颗粒间相互作用如何能够导致更广泛的可及的胶体晶体结构。二维实验与模型预测相结合可用于提供有关三维纳米或微粒组装的新基础知识。

著录项

  • 作者

    Song, Minseok.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Condensed matter physics.;Biophysics.;Physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号